Multiplex fluorescence detection of single-cell droplet microfluidics and its application in quantifying protein expression levels

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Biomicrofluidics Pub Date : 2023-12-27 DOI:10.1063/5.0179121
Guang Yang, Chiyuan Gao, Deyong Chen, Junbo Wang, Xiaoye Huo, Jian Chen
{"title":"Multiplex fluorescence detection of single-cell droplet microfluidics and its application in quantifying protein expression levels","authors":"Guang Yang, Chiyuan Gao, Deyong Chen, Junbo Wang, Xiaoye Huo, Jian Chen","doi":"10.1063/5.0179121","DOIUrl":null,"url":null,"abstract":"This study presented a platform of multiplex fluorescence detection of single-cell droplet microfluidics with demonstrative applications in quantifying protein expression levels. The platform of multiplex fluorescence detection mainly included optical paths adopted from conventional microscopy enabling the generation of three optical spots from three laser sources for multiple fluorescence excitation and capture of multiple fluorescence signals by four photomultiplier tubes. As to platform characterization, microscopic images of three optical spots were obtained where clear Gaussian distributions of intensities without skewness confirmed the functionality of the scanning lens, while the controllable distances among three optical spots validated the functionality of fiber collimators and the reflector lens. As to demonstration, this platform was used to quantify single-cell protein expression within droplets where four-type protein expression of α-tubulin, Ras, c-Myc, and β-tubulin of CAL 27 (Ncell = 1921) vs WSU-HN6 (Ncell = 1881) were quantitatively estimated, which were (2.85 ± 0.72) × 105 vs (4.83 ± 1.58) × 105, (3.69 ± 1.41) × 104 vs (5.07 ± 2.13) × 104, (5.90 ± 1.45) × 104 vs (9.57 ± 2.85) × 104, and (3.84 ± 1.28) × 105 vs (3.30 ± 1.10) × 105, respectively. Neural pattern recognition was utilized for the classification of cell types, achieving successful rates of 69.0% (α-tubulin), 75.4% (Ras), 89.1% (c-Myc), 65.8% (β-tubulin), and 99.1% in combination, validating the capability of this platform of multiplex fluorescence detection to quantify various types of single-cell proteins, which could provide comprehensive evaluations on cell status.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0179121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presented a platform of multiplex fluorescence detection of single-cell droplet microfluidics with demonstrative applications in quantifying protein expression levels. The platform of multiplex fluorescence detection mainly included optical paths adopted from conventional microscopy enabling the generation of three optical spots from three laser sources for multiple fluorescence excitation and capture of multiple fluorescence signals by four photomultiplier tubes. As to platform characterization, microscopic images of three optical spots were obtained where clear Gaussian distributions of intensities without skewness confirmed the functionality of the scanning lens, while the controllable distances among three optical spots validated the functionality of fiber collimators and the reflector lens. As to demonstration, this platform was used to quantify single-cell protein expression within droplets where four-type protein expression of α-tubulin, Ras, c-Myc, and β-tubulin of CAL 27 (Ncell = 1921) vs WSU-HN6 (Ncell = 1881) were quantitatively estimated, which were (2.85 ± 0.72) × 105 vs (4.83 ± 1.58) × 105, (3.69 ± 1.41) × 104 vs (5.07 ± 2.13) × 104, (5.90 ± 1.45) × 104 vs (9.57 ± 2.85) × 104, and (3.84 ± 1.28) × 105 vs (3.30 ± 1.10) × 105, respectively. Neural pattern recognition was utilized for the classification of cell types, achieving successful rates of 69.0% (α-tubulin), 75.4% (Ras), 89.1% (c-Myc), 65.8% (β-tubulin), and 99.1% in combination, validating the capability of this platform of multiplex fluorescence detection to quantify various types of single-cell proteins, which could provide comprehensive evaluations on cell status.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞液滴微流控的多重荧光检测及其在量化蛋白质表达水平中的应用
本研究提出了一种单细胞液滴微流控多重荧光检测平台,在量化蛋白质表达水平方面具有示范应用价值。多重荧光检测平台主要包括采用传统显微镜的光路,通过三个激光源产生三个光斑,进行多重荧光激发,并通过四个光电倍增管捕获多重荧光信号。在平台表征方面,获得了三个光点的显微图像,图像中强度的高斯分布清晰无偏,证实了扫描透镜的功能,而三个光点之间的可控距离则验证了光纤准直器和反射透镜的功能。在演示中,该平台被用于量化液滴内的单细胞蛋白质表达,对 CAL 27(Ncell = 1921)与 WSU-HN6(Ncell = 1881)的α-tubulin、Ras、c-Myc 和 β-tubulin四种蛋白质表达量进行了量化估算,分别为(2.85±0.72)×105 vs(4.83±1.58)×105、(3.69±1.41)×104 vs(5.07±2.13)×104、(5.90±1.45)×104 vs(9.57±2.85)×104、(3.84±1.28)×105 vs(3.30±1.10)×105。利用神经模式识别对细胞类型进行分类,成功率分别为 69.0%(α-tubulin)、75.4%(Ras)、89.1%(c-Myc)、65.8%(β-tubulin)和 99.1%,验证了这一多重荧光检测平台对各类单细胞蛋白的定量能力,可对细胞状态进行全面评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
期刊最新文献
Microfluidics for foodborne bacteria analysis: Moving toward multiple technologies integration. Wicking pumps for microfluidics. Lab-on-a-chip models of cardiac inflammation. In situ 3D polymerization (IS-3DP): Implementing an aqueous two-phase system for the formation of 3D objects inside a microfluidic channel. Non-invasive measurement of wall shear stress in microfluidic chip for osteoblast cell culture using improved depth estimation of defocus particle tracking method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1