A microfluidic sucrose gap platform using trilaminar flow with on-chip switching and novel calibration: Challenges and limitations.

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Biomicrofluidics Pub Date : 2025-02-10 eCollection Date: 2025-01-01 DOI:10.1063/5.0246160
J Dungan, J Mathews, M Levin, V Koomson
{"title":"A microfluidic sucrose gap platform using trilaminar flow with on-chip switching and novel calibration: Challenges and limitations.","authors":"J Dungan, J Mathews, M Levin, V Koomson","doi":"10.1063/5.0246160","DOIUrl":null,"url":null,"abstract":"<p><p>Gap junction connectivity is crucial to intercellular communication and plays a key role in many critical processes in developmental biology. However, direct analysis of gap junction connectivity in populations of developing cells has proven difficult due to the limitations of patch clamp and dye diffusion based technologies. We re-examine a microfluidic technique based on the principle of laminar flow, which aims to electrically measure gap junction connectivity. In the device, the trilaminar flow of a saline sheathed sucrose solution establishes distinct regions of electrical conductivity in the extracellular fluid spanning an NRK-49F cell monolayer. In theory, the sucrose gap created by laminar flow provides sufficient electrical isolation to detect electrical current flows through the gap junctional network. A novel calibration approach is introduced to account for stream width variation in the device, and elastomeric valves are integrated to improve the performance of gap junction blocker assays. Ultimately, however, this approach is shown to be ineffective in detecting changes in gap junction impedance due to the gap junction blocker, 2-APB. A number of challenges associated with the technique are identified and analyzed in depth and important improvements are described for future iterations.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"19 1","pages":"014102"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0246160","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Gap junction connectivity is crucial to intercellular communication and plays a key role in many critical processes in developmental biology. However, direct analysis of gap junction connectivity in populations of developing cells has proven difficult due to the limitations of patch clamp and dye diffusion based technologies. We re-examine a microfluidic technique based on the principle of laminar flow, which aims to electrically measure gap junction connectivity. In the device, the trilaminar flow of a saline sheathed sucrose solution establishes distinct regions of electrical conductivity in the extracellular fluid spanning an NRK-49F cell monolayer. In theory, the sucrose gap created by laminar flow provides sufficient electrical isolation to detect electrical current flows through the gap junctional network. A novel calibration approach is introduced to account for stream width variation in the device, and elastomeric valves are integrated to improve the performance of gap junction blocker assays. Ultimately, however, this approach is shown to be ineffective in detecting changes in gap junction impedance due to the gap junction blocker, 2-APB. A number of challenges associated with the technique are identified and analyzed in depth and important improvements are described for future iterations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
期刊最新文献
A microfluidic sucrose gap platform using trilaminar flow with on-chip switching and novel calibration: Challenges and limitations. Processing and inspection of high-pressure microfluidics systems: A review. Design of 3D printed chip to improve sensitivity of platelet adhesion through reinjection: Effect of alcohol consumption on platelet adhesion. Impact of dcEF on microRNA profiles in glioblastoma and exosomes using a novel microfluidic bioreactor. Bio-energy-powered microfluidic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1