Optimization-enabled deep learning model for disease detection in IoT platform.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-05-01 Epub Date: 2023-12-28 DOI:10.1080/0954898X.2023.2296568
Amol Dattatray Dhaygude
{"title":"Optimization-enabled deep learning model for disease detection in IoT platform.","authors":"Amol Dattatray Dhaygude","doi":"10.1080/0954898X.2023.2296568","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, Internet of things (IoT) and IoT platforms are extensively utilized in several healthcare applications. The IoT devices produce a huge amount of data in healthcare field that can be inspected on an IoT platform. In this paper, a novel algorithm, named artificial flora optimization-based chameleon swarm algorithm (AFO-based CSA), is developed for optimal path finding. Here, data are collected by the sensors and transmitted to the base station (BS) using the proposed AFO-based CSA, which is derived by integrating artificial flora optimization (AFO) in chameleon swarm algorithm (CSA). This integration refers to the AFO-based CSA model enhancing the strengths and features of both AFO and CSA for optimal routing of medical data in IoT. Moreover, the proposed AFO-based CSA algorithm considers factors such as energy, delay, and distance for the effectual routing of data. At BS, prediction is conducted, followed by stages, like pre-processing, feature dimension reduction, adopting Pearson's correlation, and disease detection, done by recurrent neural network, which is trained by the proposed AFO-based CSA. Experimental result exhibited that the performance of the proposed AFO-based CSA is superior to competitive approaches based on the energy consumption (0.538 J), accuracy (0.950), sensitivity (0.965), and specificity (0.937).</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"190-211"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2296568","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, Internet of things (IoT) and IoT platforms are extensively utilized in several healthcare applications. The IoT devices produce a huge amount of data in healthcare field that can be inspected on an IoT platform. In this paper, a novel algorithm, named artificial flora optimization-based chameleon swarm algorithm (AFO-based CSA), is developed for optimal path finding. Here, data are collected by the sensors and transmitted to the base station (BS) using the proposed AFO-based CSA, which is derived by integrating artificial flora optimization (AFO) in chameleon swarm algorithm (CSA). This integration refers to the AFO-based CSA model enhancing the strengths and features of both AFO and CSA for optimal routing of medical data in IoT. Moreover, the proposed AFO-based CSA algorithm considers factors such as energy, delay, and distance for the effectual routing of data. At BS, prediction is conducted, followed by stages, like pre-processing, feature dimension reduction, adopting Pearson's correlation, and disease detection, done by recurrent neural network, which is trained by the proposed AFO-based CSA. Experimental result exhibited that the performance of the proposed AFO-based CSA is superior to competitive approaches based on the energy consumption (0.538 J), accuracy (0.950), sensitivity (0.965), and specificity (0.937).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于物联网平台疾病检测的优化深度学习模型。
如今,物联网(IoT)和物联网平台已广泛应用于多个医疗保健领域。物联网设备在医疗保健领域产生了大量数据,这些数据可以在物联网平台上进行检测。本文开发了一种新型算法,名为基于人工植物群优化的变色龙蜂群算法(AFO-based CSA),用于优化路径查找。本文提出的基于 AFO 的 CSA 是将人工植物群优化(AFO)集成到变色龙群算法(CSA)中得出的。这种集成是指基于 AFO 的 CSA 模型增强了 AFO 和 CSA 的优势和特点,从而实现物联网中医疗数据的优化路由。此外,所提出的基于 AFO 的 CSA 算法考虑了能量、延迟和距离等因素,以实现有效的数据路由。在 BS 阶段,通过基于 AFO 的 CSA 训练的递归神经网络进行预测、预处理、特征降维、采用皮尔逊相关性和疾病检测等阶段。实验结果表明,基于 AFO 的 CSA 在能耗(0.538 J)、准确性(0.950)、灵敏度(0.965)和特异性(0.937)方面均优于其他竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Optimizing tomato detection and counting in smart greenhouses: A lightweight YOLOv8 model incorporating high- and low-frequency feature transformer structures. HCAR-AM ground nut leaf net: Hybrid convolution-based adaptive ResNet with attention mechanism for detecting ground nut leaf diseases with adaptive segmentation. Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection. Can human brain connectivity explain verbal working memory? Automatic screening of retinal lesions for detecting diabetic retinopathy using adaptive multiscale MobileNet with abnormality segmentation from public dataset.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1