Q-learning and fuzzy logic multi-tier multi-access edge clustering for 5g v2x communication.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-03-06 DOI:10.1080/0954898X.2024.2309947
Sangeetha Alagumani, Uma Maheswari Natarajan
{"title":"Q-learning and fuzzy logic multi-tier multi-access edge clustering for 5g v2x communication.","authors":"Sangeetha Alagumani, Uma Maheswari Natarajan","doi":"10.1080/0954898X.2024.2309947","DOIUrl":null,"url":null,"abstract":"<p><p>The 5th generation (5 G) network is required to meet the growing demand for fast data speeds and the expanding number of customers. Apart from offering higher speeds, 5 G will be employed in other industries such as the Internet of Things, broadcast services, and so on. Energy efficiency, scalability, resiliency, interoperability, and high data rate/low delay are the primary requirements and obstacles of 5 G cellular networks. Due to IEEE 802.11p's constraints, such as limited coverage, inability to handle dense vehicle networks, signal congestion, and connectivity outages, efficient data distribution is a big challenge (MAC contention problem). In this research, vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-pedestrian (V2P) services are used to overcome bandwidth constraints in very dense network communications from cellular tool to everything (C-V2X). Clustering is done through multi-layered multi-access edge clustering, which helps reduce vehicle contention. Fuzzy logic and Q-learning and intelligence are used for a multi-hop route selection system. The proposed protocol adjusts the number of cluster-head nodes using a Q-learning algorithm, allowing it to quickly adapt to a range of scenarios with varying bandwidths and vehicle densities.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-24"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2309947","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The 5th generation (5 G) network is required to meet the growing demand for fast data speeds and the expanding number of customers. Apart from offering higher speeds, 5 G will be employed in other industries such as the Internet of Things, broadcast services, and so on. Energy efficiency, scalability, resiliency, interoperability, and high data rate/low delay are the primary requirements and obstacles of 5 G cellular networks. Due to IEEE 802.11p's constraints, such as limited coverage, inability to handle dense vehicle networks, signal congestion, and connectivity outages, efficient data distribution is a big challenge (MAC contention problem). In this research, vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-pedestrian (V2P) services are used to overcome bandwidth constraints in very dense network communications from cellular tool to everything (C-V2X). Clustering is done through multi-layered multi-access edge clustering, which helps reduce vehicle contention. Fuzzy logic and Q-learning and intelligence are used for a multi-hop route selection system. The proposed protocol adjusts the number of cluster-head nodes using a Q-learning algorithm, allowing it to quickly adapt to a range of scenarios with varying bandwidths and vehicle densities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 5g v2x 通信的 Q-learning 和模糊逻辑多层多接入边缘聚类。
第五代(5 G)网络需要满足日益增长的高速数据需求和不断扩大的客户数量。除了提供更高的速度,5 G 还将应用于其他行业,如物联网、广播服务等。能源效率、可扩展性、弹性、互操作性和高数据速率/低延迟是 5 G 蜂窝网络的主要要求和障碍。由于 IEEE 802.11p 的限制,如有限的覆盖范围、无法处理密集的车辆网络、信号拥塞和连接中断,高效的数据分发是一个巨大的挑战(MAC 竞争问题)。在这项研究中,车对车(V2V)、车对基础设施(V2I)和车对行人(V2P)服务被用来克服从蜂窝工具到万物(C-V2X)的高密度网络通信中的带宽限制。聚类是通过多层多接入边缘聚类完成的,这有助于减少车辆争用。多跳路由选择系统采用了模糊逻辑和 Q 学习与智能。提议的协议使用 Q-learning 算法调整簇头节点的数量,使其能够快速适应带宽和车辆密度不同的各种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Optimizing tomato detection and counting in smart greenhouses: A lightweight YOLOv8 model incorporating high- and low-frequency feature transformer structures. HCAR-AM ground nut leaf net: Hybrid convolution-based adaptive ResNet with attention mechanism for detecting ground nut leaf diseases with adaptive segmentation. Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection. Can human brain connectivity explain verbal working memory? Automatic screening of retinal lesions for detecting diabetic retinopathy using adaptive multiscale MobileNet with abnormality segmentation from public dataset.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1