{"title":"Limits to species distributions on tropical mountains shift from high temperature to competition as elevation increases","authors":"Jinlin Chen, Owen T. Lewis","doi":"10.1002/ecm.1597","DOIUrl":null,"url":null,"abstract":"<p>Species turnover with elevation is a widespread phenomenon and provides valuable information on why and how ecological communities might reorganize as the climate warms. It is commonly assumed that species interactions are more likely to set warm range limits, while physiological tolerances determine cold range limits. However, most studies are from temperate systems and rely on correlations between thermal physiological traits and range limits; little is known about how physiological traits and biotic interactions change simultaneously along continuous thermal gradients. We used a combination of correlational and experimental approaches to investigate communities of <i>Drosophila</i> flies in rainforests of the Australian Wet Tropics, where there is substantial species turnover with elevation. Our experiments quantified individual-level and population-level responses to temperature, as well as the impact of interspecific competition under different temperature regimes. Species' distributions were better explained by their performance at extreme temperatures than by their thermal optima. Upper thermal limits varied less among species than lower thermal limits. Nonetheless, these small differences were associated with differences in the centered elevation of distribution. Low-elevation species were not those with the lowest tolerance to cold, suggesting that cold temperatures were not limiting their abundance at high elevations. Instead, under upland temperature regimes, abundances of these low-elevation species were reduced by competition with a high-elevation species, in both short- and long-term competition experiments. Our results demonstrate that high-elevation species are confined to their current ranges by high temperatures at lower elevations, indicating that their ranges will be highly sensitive to future warming. Counter to expectation, species interactions strongly influenced community composition at cooler, high-elevation sites. Together, these results raise the possibility that tropical communities differ from better-studied temperate communities in terms of the relative importance of biotic interactions and abiotic factors in shaping community composition and how the impact of these factors will change as temperatures increase.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1597","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1597","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Species turnover with elevation is a widespread phenomenon and provides valuable information on why and how ecological communities might reorganize as the climate warms. It is commonly assumed that species interactions are more likely to set warm range limits, while physiological tolerances determine cold range limits. However, most studies are from temperate systems and rely on correlations between thermal physiological traits and range limits; little is known about how physiological traits and biotic interactions change simultaneously along continuous thermal gradients. We used a combination of correlational and experimental approaches to investigate communities of Drosophila flies in rainforests of the Australian Wet Tropics, where there is substantial species turnover with elevation. Our experiments quantified individual-level and population-level responses to temperature, as well as the impact of interspecific competition under different temperature regimes. Species' distributions were better explained by their performance at extreme temperatures than by their thermal optima. Upper thermal limits varied less among species than lower thermal limits. Nonetheless, these small differences were associated with differences in the centered elevation of distribution. Low-elevation species were not those with the lowest tolerance to cold, suggesting that cold temperatures were not limiting their abundance at high elevations. Instead, under upland temperature regimes, abundances of these low-elevation species were reduced by competition with a high-elevation species, in both short- and long-term competition experiments. Our results demonstrate that high-elevation species are confined to their current ranges by high temperatures at lower elevations, indicating that their ranges will be highly sensitive to future warming. Counter to expectation, species interactions strongly influenced community composition at cooler, high-elevation sites. Together, these results raise the possibility that tropical communities differ from better-studied temperate communities in terms of the relative importance of biotic interactions and abiotic factors in shaping community composition and how the impact of these factors will change as temperatures increase.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.