Optimized aspect and self-attention aware LSTM for target-based semantic analysis (OAS-LSTM-TSA)

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Technologies and Applications Pub Date : 2023-12-29 DOI:10.1108/dta-10-2022-0408
B. Vasavi, P. Dileep, Ulligaddala Srrinivasarao
{"title":"Optimized aspect and self-attention aware LSTM for target-based semantic analysis (OAS-LSTM-TSA)","authors":"B. Vasavi, P. Dileep, Ulligaddala Srrinivasarao","doi":"10.1108/dta-10-2022-0408","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Aspect-based sentiment analysis (ASA) is a task of sentiment analysis that requires predicting aspect sentiment polarity for a given sentence. Many traditional techniques use graph-based mechanisms, which reduce prediction accuracy and introduce large amounts of noise. The other problem with graph-based mechanisms is that for some context words, the feelings change depending on the aspect, and therefore it is impossible to draw conclusions on their own. ASA is challenging because a given sentence can reveal complicated feelings about multiple aspects.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This research proposed an optimized attention-based DL model known as optimized aspect and self-attention aware long short-term memory for target-based semantic analysis (OAS-LSTM-TSA). The proposed model goes through three phases: preprocessing, aspect extraction and classification. Aspect extraction is done using a double-layered convolutional neural network (DL-CNN). The optimized aspect and self-attention embedded LSTM (OAS-LSTM) is used to classify aspect sentiment into three classes: positive, neutral and negative.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>To detect and classify sentiment polarity of the aspect using the optimized aspect and self-attention embedded LSTM (OAS-LSTM) model. The results of the proposed method revealed that it achieves a high accuracy of 95.3 per cent for the restaurant dataset and 96.7 per cent for the laptop dataset.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The novelty of the research work is the addition of two effective attention layers in the network model, loss function reduction and accuracy enhancement, using a recent efficient optimization algorithm. The loss function in OAS-LSTM is minimized using the adaptive pelican optimization algorithm, thus increasing the accuracy rate. The performance of the proposed method is validated on four real-time datasets, Rest14, Lap14, Rest15 and Rest16, for various performance metrics.</p><!--/ Abstract__block -->","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":"21 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-10-2022-0408","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Aspect-based sentiment analysis (ASA) is a task of sentiment analysis that requires predicting aspect sentiment polarity for a given sentence. Many traditional techniques use graph-based mechanisms, which reduce prediction accuracy and introduce large amounts of noise. The other problem with graph-based mechanisms is that for some context words, the feelings change depending on the aspect, and therefore it is impossible to draw conclusions on their own. ASA is challenging because a given sentence can reveal complicated feelings about multiple aspects.

Design/methodology/approach

This research proposed an optimized attention-based DL model known as optimized aspect and self-attention aware long short-term memory for target-based semantic analysis (OAS-LSTM-TSA). The proposed model goes through three phases: preprocessing, aspect extraction and classification. Aspect extraction is done using a double-layered convolutional neural network (DL-CNN). The optimized aspect and self-attention embedded LSTM (OAS-LSTM) is used to classify aspect sentiment into three classes: positive, neutral and negative.

Findings

To detect and classify sentiment polarity of the aspect using the optimized aspect and self-attention embedded LSTM (OAS-LSTM) model. The results of the proposed method revealed that it achieves a high accuracy of 95.3 per cent for the restaurant dataset and 96.7 per cent for the laptop dataset.

Originality/value

The novelty of the research work is the addition of two effective attention layers in the network model, loss function reduction and accuracy enhancement, using a recent efficient optimization algorithm. The loss function in OAS-LSTM is minimized using the adaptive pelican optimization algorithm, thus increasing the accuracy rate. The performance of the proposed method is validated on four real-time datasets, Rest14, Lap14, Rest15 and Rest16, for various performance metrics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于基于目标的语义分析的优化方面和自我注意感知 LSTM(OAS-LSTM-TSA)
目的基于方面的情感分析(ASA)是情感分析的一项任务,需要预测给定句子的方面情感极性。许多传统技术使用基于图的机制,这会降低预测准确性并引入大量噪声。基于图的机制的另一个问题是,对于某些上下文词语来说,情感会随着方面的变化而变化,因此无法单独得出结论。ASA 具有挑战性,因为一个给定的句子可能揭示出多个方面的复杂感受。这项研究提出了一种基于注意力的优化 DL 模型,称为优化方面和自我注意力感知长短时记忆目标语义分析(OAS-LSTM-TSA)。该模型分为三个阶段:预处理、方面提取和分类。方面提取是通过双层卷积神经网络(DL-CNN)完成的。使用优化的方面和自我关注嵌入式 LSTM(OAS-LSTM)将方面情感分为三类:正面、中性和负面。研究工作的新颖之处在于利用最新的高效优化算法,在网络模型中增加了两个有效的关注层,减少了损失函数并提高了准确度。利用自适应鹈鹕优化算法将 OAS-LSTM 中的损失函数最小化,从而提高了准确率。在 Rest14、Lap14、Rest15 和 Rest16 四个实时数据集上,针对各种性能指标验证了所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Technologies and Applications
Data Technologies and Applications Social Sciences-Library and Information Sciences
CiteScore
3.80
自引率
6.20%
发文量
29
期刊介绍: Previously published as: Program Online from: 2018 Subject Area: Information & Knowledge Management, Library Studies
期刊最新文献
Understanding customer behavior by mapping complaints to personality based on social media textual data A systematic review of the use of FHIR to support clinical research, public health and medical education Novel framework for learning performance prediction using pattern identification and deep learning A comparative analysis of job satisfaction prediction models using machine learning: a mixed-method approach Assessing the alignment of corporate ESG disclosures with the UN sustainable development goals: a BERT-based text analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1