Aptasensors based on silicon nanowire field-effect transistors for electrical detection of thrombin

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronic Engineering Pub Date : 2023-12-30 DOI:10.1016/j.mee.2023.112130
Rony Midahuen , Valérie Stambouli , Caroline Fontelaye , Guillaume Nonglaton , Nicolas Spinelli , Sylvain Barraud
{"title":"Aptasensors based on silicon nanowire field-effect transistors for electrical detection of thrombin","authors":"Rony Midahuen ,&nbsp;Valérie Stambouli ,&nbsp;Caroline Fontelaye ,&nbsp;Guillaume Nonglaton ,&nbsp;Nicolas Spinelli ,&nbsp;Sylvain Barraud","doi":"10.1016/j.mee.2023.112130","DOIUrl":null,"url":null,"abstract":"<div><p><span>Arrays of silicon<span><span> nanowire field-effect transistors (Si NWFETs) were built to detect thrombin (a model biomarker) electrically. The Si NWFETs were created using a conventional top-down CMOS process, allowing them to be co-integrated with CMOS </span>readout circuits<span> in the future. EHTES organosilane was then used to graft aptamer probes onto the HfO</span></span></span><sub>2</sub><span><span> gate oxide<span> of Si nanowires. We investigated the influence of aptamer grafting and thrombin recognition on the electrical transfer capabilities of Si NWFET </span></span>aptasensors<span> in details. Our technique was evaluated on a significant number of Si NWFETs, including two distinct chips with 30 aptasensors apiece. According to the findings, aptamer grafting increased the threshold voltage by a positive range of +28.8 mV to +87.7 mV, depending on the aptasensor employed. Thrombin identification, on the other hand, resulted in a negative shift of the threshold voltage between −26.6 and − 23.8 mV. These opposing voltage shifts coincide with the aptamer probes' and thrombin molecules' electric charges, respectively. These findings provide unique demonstration of Si NWFETs manufactured utilizing typical top-down CMOS processing methods, allowing these devices to be used in various biomedical and biosensing applications.</span></span></p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931723001958","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Arrays of silicon nanowire field-effect transistors (Si NWFETs) were built to detect thrombin (a model biomarker) electrically. The Si NWFETs were created using a conventional top-down CMOS process, allowing them to be co-integrated with CMOS readout circuits in the future. EHTES organosilane was then used to graft aptamer probes onto the HfO2 gate oxide of Si nanowires. We investigated the influence of aptamer grafting and thrombin recognition on the electrical transfer capabilities of Si NWFET aptasensors in details. Our technique was evaluated on a significant number of Si NWFETs, including two distinct chips with 30 aptasensors apiece. According to the findings, aptamer grafting increased the threshold voltage by a positive range of +28.8 mV to +87.7 mV, depending on the aptasensor employed. Thrombin identification, on the other hand, resulted in a negative shift of the threshold voltage between −26.6 and − 23.8 mV. These opposing voltage shifts coincide with the aptamer probes' and thrombin molecules' electric charges, respectively. These findings provide unique demonstration of Si NWFETs manufactured utilizing typical top-down CMOS processing methods, allowing these devices to be used in various biomedical and biosensing applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于硅纳米线场效应晶体管的用于凝血酶电检测的光电传感器
我们建立了硅纳米线场效应晶体管(Si NWFET)阵列,用于电子检测凝血酶(一种模型生物标记物)。硅纳米线场效应晶体管是采用传统的自上而下 CMOS 工艺制造的,因此将来可以与 CMOS 读出电路共同集成。然后,我们使用 EHTES 有机硅烷在硅纳米线的 HfO2 栅极氧化物上接枝适配体探针。我们详细研究了适配体接枝和凝血酶识别对 Si NWFET 合传感器电传递能力的影响。我们的技术在大量 Si NWFET 上进行了评估,包括两块各含 30 个适配体的不同芯片。研究结果表明,根据所采用的适配体传感器,适配体接枝将阈值电压提高了 +28.8 mV 至 +87.7 mV 的正范围。而凝血酶识别则导致阈值电压在 -26.6 至 -23.8 mV 之间负向移动。这些相反的电压移动分别与适配体探针和凝血酶分子的电荷相吻合。这些发现为利用典型的自上而下 CMOS 加工方法制造硅 NWFET 提供了独特的示范,使这些器件能够用于各种生物医学和生物传感应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
期刊最新文献
Origin of charges in bulk Si:HfO2 FeFET probed by nanosecond polarization measurements On the mechanical properties of ultrathin titanium nitride films under different gas ratios of PVD process A 10 kHz bandwidth low-power active negative feedback front-end amplifier based on unipolar IZO TFT technology Dynamics of set and reset processes in HfO2 -based bipolar resistive switching devices A novel high-Q Lamé mode bulk acoustic resonator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1