Unraveling the role of post-annealing in IGZO transistor for memory applications

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronic Engineering Pub Date : 2025-01-19 DOI:10.1016/j.mee.2025.112322
Nayeon Kim , Jiae Jeong , Jae Woo Lee , Jiyong Woo
{"title":"Unraveling the role of post-annealing in IGZO transistor for memory applications","authors":"Nayeon Kim ,&nbsp;Jiae Jeong ,&nbsp;Jae Woo Lee ,&nbsp;Jiyong Woo","doi":"10.1016/j.mee.2025.112322","DOIUrl":null,"url":null,"abstract":"<div><div>We demonstrate that post-annealing techniques are important for achieving the transfer characteristics of indium‑gallium‑zinc oxide (IGZO) transistors and identify that their role depends on the sputter-deposited IGZO film conditions. The as-fabricated transistor with a thin IGZO channel, HfO<sub>2</sub> gate dielectric, and Mo gate electrode exhibits a constant drain current (I<sub>DS</sub>) over gate voltage (V<sub>GS</sub>). Although the oxygen (O<sub>2</sub>) plasma gas rate is adjusted from 0.2 to 1 sccm with an argon gas rate of 30 sccm during IGZO deposition, the I<sub>DS</sub> level was reduced by a factor of 10<sup>4</sup>. Notably, V<sub>GS</sub>-controlled transfer behavior of the transistors only starts after post-annealing is performed at temperatures above 300 °C, regardless of which IGZO channel properties are used. More specifically, since oxygen vacancies (V<sub>O</sub>s) serve as carriers in the IGZO, annealing in different O<sub>2</sub> gas or air environments to generate or reduce the number of V<sub>O</sub>s is found to be optimal for the V<sub>O</sub>-rich or V<sub>O</sub>-poor channels, respectively. In this study, we reveal that oxidation annealing appears to be a more effective way for achieving improved gate controllability (e.g., subthreshold swing). Accordingly, we further analyze how the V<sub>O</sub>s in the IGZO are involved in switching by examining the effect of annealing temperature and gate dielectric materials on the transfer curve. These results indicate that V<sub>O</sub>s in the bulk need to be annihilated to lower the off-state I<sub>DS</sub>, while a sufficient number of V<sub>O</sub>s near the channel and gate dielectric interface should be ensured to responded by V<sub>GS</sub> for rapid switching.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"298 ","pages":"Article 112322"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931725000115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate that post-annealing techniques are important for achieving the transfer characteristics of indium‑gallium‑zinc oxide (IGZO) transistors and identify that their role depends on the sputter-deposited IGZO film conditions. The as-fabricated transistor with a thin IGZO channel, HfO2 gate dielectric, and Mo gate electrode exhibits a constant drain current (IDS) over gate voltage (VGS). Although the oxygen (O2) plasma gas rate is adjusted from 0.2 to 1 sccm with an argon gas rate of 30 sccm during IGZO deposition, the IDS level was reduced by a factor of 104. Notably, VGS-controlled transfer behavior of the transistors only starts after post-annealing is performed at temperatures above 300 °C, regardless of which IGZO channel properties are used. More specifically, since oxygen vacancies (VOs) serve as carriers in the IGZO, annealing in different O2 gas or air environments to generate or reduce the number of VOs is found to be optimal for the VO-rich or VO-poor channels, respectively. In this study, we reveal that oxidation annealing appears to be a more effective way for achieving improved gate controllability (e.g., subthreshold swing). Accordingly, we further analyze how the VOs in the IGZO are involved in switching by examining the effect of annealing temperature and gate dielectric materials on the transfer curve. These results indicate that VOs in the bulk need to be annihilated to lower the off-state IDS, while a sufficient number of VOs near the channel and gate dielectric interface should be ensured to responded by VGS for rapid switching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
期刊最新文献
Amorphous indium gallium zinc oxide thin film transistors (a-IGZO-TFTs): Exciting prospects and fabrication challenges Spin coating in semiconductor lithography: Advances in modeling and future prospects Optimized fabrication of subwavelength slanted gratings via laser interference lithography and faraday cage-assisted etching Unraveling the role of post-annealing in IGZO transistor for memory applications Low temperature solid-state diffusion bonding of fine pitch Cu/Sn micro-bumps assisted with formic acid vapor for 3D integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1