M L T Dambly, F Samrock, A Grayver, H Eysteinsson, M O Saar
{"title":"Geophysical imaging of the active magmatic intrusion and geothermal reservoir formation beneath the Corbetti prospect, Main Ethiopian Rift","authors":"M L T Dambly, F Samrock, A Grayver, H Eysteinsson, M O Saar","doi":"10.1093/gji/ggad493","DOIUrl":null,"url":null,"abstract":"Summary Silicic volcanic complexes in the Main Ethiopian Rift (MER) system host long-lived shallow magma reservoirs that provide heat needed to drive geothermal systems. Some of these geothermal systems in Ethiopia appear to be suitable for green and sustainable electricity generation. One such prospect is located at the Corbetti volcanic complex near the city of Awassa. High-resolution imaging of the subsurface below Corbetti is of imminent importance, not only because of its geothermal potential, but also due to reported evidence for an ongoing magmatic intrusion. In this study we present a new subsurface 3-D electrical conductivity model of Corbetti obtained through the inversion of 120 magnetotelluric stations. The model elucidates a magmatic system under Corbetti and reveals that it is linked to a magma ponding zone in the lower crust. Magma is transported through the crust and accumulates in a shallow reservoir in form of a magmatic mush at a depth of ⪆4 kmb.s.l. below the caldera. The imaged extent and depth of the shallow magma reservoir is in agreement with previous geodetic and gravimetric studies that proposed an ongoing magmatic intrusion. Interpreting our model with laboratory-based conductivity models for basaltic and rhyolitic melt compositions suggests that Corbetti is seemingly in a non-eruptible state with ∼6 − 16 vol per cent basaltic melt in the lower crust and ∼20 − 35 vol per cent rhyolitic melt in the upper crust. With these observations, Corbetti’s magmatic system shares common characteristics with volcanic complexes found in the central Main Ethiopian Rift. Specifically, these volcanic complexes are transcrustal two-stage magmatic systems with magma storage in the lower and upper crust that supply heat for volcano-hosted high-temperature geothermal systems above them. According to the presented subsurface model, a cross-rift volcano-tectonic lineament exerts first-order controls on the magma emplacement and hydrothermal convection at Corbetti. Our study depicts hydrothermal convection pathways in unprecedented detail for this system and helps identify prospective regions for future geothermal exploration. Three-dimensional imaging of both the Corbetti’s magmatic and associated geothermal systems provides key information for the quantitative evaluation of Corbetti’s geothermal energy potential and for the assessment of potential volcanic risks.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"33 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggad493","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Summary Silicic volcanic complexes in the Main Ethiopian Rift (MER) system host long-lived shallow magma reservoirs that provide heat needed to drive geothermal systems. Some of these geothermal systems in Ethiopia appear to be suitable for green and sustainable electricity generation. One such prospect is located at the Corbetti volcanic complex near the city of Awassa. High-resolution imaging of the subsurface below Corbetti is of imminent importance, not only because of its geothermal potential, but also due to reported evidence for an ongoing magmatic intrusion. In this study we present a new subsurface 3-D electrical conductivity model of Corbetti obtained through the inversion of 120 magnetotelluric stations. The model elucidates a magmatic system under Corbetti and reveals that it is linked to a magma ponding zone in the lower crust. Magma is transported through the crust and accumulates in a shallow reservoir in form of a magmatic mush at a depth of ⪆4 kmb.s.l. below the caldera. The imaged extent and depth of the shallow magma reservoir is in agreement with previous geodetic and gravimetric studies that proposed an ongoing magmatic intrusion. Interpreting our model with laboratory-based conductivity models for basaltic and rhyolitic melt compositions suggests that Corbetti is seemingly in a non-eruptible state with ∼6 − 16 vol per cent basaltic melt in the lower crust and ∼20 − 35 vol per cent rhyolitic melt in the upper crust. With these observations, Corbetti’s magmatic system shares common characteristics with volcanic complexes found in the central Main Ethiopian Rift. Specifically, these volcanic complexes are transcrustal two-stage magmatic systems with magma storage in the lower and upper crust that supply heat for volcano-hosted high-temperature geothermal systems above them. According to the presented subsurface model, a cross-rift volcano-tectonic lineament exerts first-order controls on the magma emplacement and hydrothermal convection at Corbetti. Our study depicts hydrothermal convection pathways in unprecedented detail for this system and helps identify prospective regions for future geothermal exploration. Three-dimensional imaging of both the Corbetti’s magmatic and associated geothermal systems provides key information for the quantitative evaluation of Corbetti’s geothermal energy potential and for the assessment of potential volcanic risks.
期刊介绍:
Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.