Duc-Vinh Nguyen, Mohamed Jebahi, Victor Champaney, Francisco Chinesta
{"title":"Identification of material parameters in low-data limit: application to gradient-enhanced continua","authors":"Duc-Vinh Nguyen, Mohamed Jebahi, Victor Champaney, Francisco Chinesta","doi":"10.1007/s12289-023-01807-7","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various engineering fields to manufacture miniaturized products. These processes generally exhibit complex size effects, making the behavior of materials highly dependent on their geometric dimensions. As a result, accurate understanding and modeling of such effects are crucial for optimizing manufacturing outcomes and achieving high-performance final products. To this end, advanced gradient-enhanced plasticity theories have emerged as powerful tools for capturing these complex phenomena, offering a level of accuracy significantly greater than that provided by classical plasticity approaches. However, these advanced theories often require the identification of a large number of material parameters, which poses a significant challenge due to limited experimental data at small scales and high computation costs. The present paper aims at evaluating and comparing the effectiveness of various optimization techniques, including evolutionary algorithm, response surface methodology and Bayesian optimization, in identifying the material parameter of a recent flexible gradient-enhanced plasticity model developed by the authors. The paper findings represent an attempt to bridge the gap between advanced material behavior theories and their practical industrial applications, by offering insights into efficient and reliable material parameter identification procedures.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01807-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various engineering fields to manufacture miniaturized products. These processes generally exhibit complex size effects, making the behavior of materials highly dependent on their geometric dimensions. As a result, accurate understanding and modeling of such effects are crucial for optimizing manufacturing outcomes and achieving high-performance final products. To this end, advanced gradient-enhanced plasticity theories have emerged as powerful tools for capturing these complex phenomena, offering a level of accuracy significantly greater than that provided by classical plasticity approaches. However, these advanced theories often require the identification of a large number of material parameters, which poses a significant challenge due to limited experimental data at small scales and high computation costs. The present paper aims at evaluating and comparing the effectiveness of various optimization techniques, including evolutionary algorithm, response surface methodology and Bayesian optimization, in identifying the material parameter of a recent flexible gradient-enhanced plasticity model developed by the authors. The paper findings represent an attempt to bridge the gap between advanced material behavior theories and their practical industrial applications, by offering insights into efficient and reliable material parameter identification procedures.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.