Lithium-Ion Accelerated Regulators by Locally-Zwitterionic Covalent Organic Framework Nanosheets

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-01-02 DOI:10.1002/aenm.202303672
Guoxing Jiang, Wenwu Zou, Weifeng Zhang, Zhaoyuan Ou, Shengguang Qi, Tongmei Ma, Zhiming Cui, Zhenxing Liang, Li Du
{"title":"Lithium-Ion Accelerated Regulators by Locally-Zwitterionic Covalent Organic Framework Nanosheets","authors":"Guoxing Jiang,&nbsp;Wenwu Zou,&nbsp;Weifeng Zhang,&nbsp;Zhaoyuan Ou,&nbsp;Shengguang Qi,&nbsp;Tongmei Ma,&nbsp;Zhiming Cui,&nbsp;Zhenxing Liang,&nbsp;Li Du","doi":"10.1002/aenm.202303672","DOIUrl":null,"url":null,"abstract":"<p>Rational regulation of the Li-ion (Li<sup>+</sup>) migration behaviors and charge distribution at the electrolyte–electrode interface is of great significance in pursuit of high-performance lithium metal battery (LMB) chemistry. Herein, unique locally-zwitterionic covalent organic framework nanosheets (ziCOFNs) are developed as Li<sup>+</sup> accelerated regulators, whose functions include not only kinetics-boosted Li<sup>+</sup> migration but also induces uniform charge distribution in LMBs. The zwitterions act as “dissociation enhancers” to trigger efficient Li<sup>+</sup> desolvation, while the abundant ─COO<sup>−</sup> units within the nanopores favor rapid Li<sup>+</sup> diffusion. In addition, the ordered ionic skeleton dynamically homogenizes the interfacial charge, thereby inhibiting Li dendrite growth and stabilizing the Li-interface chemistry. When implemented as a functional interlayer in the cell configuration, ziCOFNs display ultrahigh transfer number (0.84) and ionic conductivity beyond 4.5 mS cm<sup>−1</sup>. With such a layer, stable Li plating/stripping (over 6500 h) at 3 mA cm<sup>−2</sup> in symmetric cells, and superior long-term cycle performance in high-loading LiFePO<sub>4</sub> (9.4 mg cm<sup>−2</sup>) full cells are achieved. Detailed experimental characterizations combined with theoretical calculations elucidate the mechanism of the zwitterionic framework tuning Li<sup>+</sup> migration behaviors. This work is anticipated to shed fresh light on the exploration of zwitterionic crystalline materials in next-generation LMBs.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202303672","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rational regulation of the Li-ion (Li+) migration behaviors and charge distribution at the electrolyte–electrode interface is of great significance in pursuit of high-performance lithium metal battery (LMB) chemistry. Herein, unique locally-zwitterionic covalent organic framework nanosheets (ziCOFNs) are developed as Li+ accelerated regulators, whose functions include not only kinetics-boosted Li+ migration but also induces uniform charge distribution in LMBs. The zwitterions act as “dissociation enhancers” to trigger efficient Li+ desolvation, while the abundant ─COO units within the nanopores favor rapid Li+ diffusion. In addition, the ordered ionic skeleton dynamically homogenizes the interfacial charge, thereby inhibiting Li dendrite growth and stabilizing the Li-interface chemistry. When implemented as a functional interlayer in the cell configuration, ziCOFNs display ultrahigh transfer number (0.84) and ionic conductivity beyond 4.5 mS cm−1. With such a layer, stable Li plating/stripping (over 6500 h) at 3 mA cm−2 in symmetric cells, and superior long-term cycle performance in high-loading LiFePO4 (9.4 mg cm−2) full cells are achieved. Detailed experimental characterizations combined with theoretical calculations elucidate the mechanism of the zwitterionic framework tuning Li+ migration behaviors. This work is anticipated to shed fresh light on the exploration of zwitterionic crystalline materials in next-generation LMBs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部共价有机框架纳米片的锂离子加速调节器
合理调节电解质-电极界面的锂离子(Li+)迁移行为和电荷分布对实现高性能锂金属电池(LMB)化学具有重要意义。本文开发了独特的局部齐聚物有机框架纳米片(ziCOFNs)作为 Li+ 加速调节剂,其功能不仅包括促进 Li+ 迁移的动力学,还包括诱导 LMB 中均匀的电荷分布。齐聚物可作为 "解离促进剂",引发高效的 Li+ 解溶,而纳米孔内丰富的 -COO- 单元则有利于 Li+ 的快速扩散。此外,有序的离子骨架还能动态均化界面电荷,从而抑制锂枝晶的生长并稳定锂界面化学。当在电池配置中将 ziCOFNs 用作功能性中间层时,它显示出超高的转移数(0.84)和超过 4.5 mS cm-1 的离子电导率。有了这一层,对称电池在 3 mA cm-2 下可实现稳定的锂镀层/剥离(超过 6500 小时),而在高负载磷酸铁锂(9.4 mg cm-2)全电池中则可实现卓越的长期循环性能。详细的实验表征与理论计算相结合,阐明了齐聚物框架调整 Li+ 迁移行为的机制。这项工作有望为探索下一代 LMB 中的齐聚物晶体材料带来新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Are Sulfide-Based Solid-State Electrolytes the Best Pair for Si Anodes in Li-Ion Batteries? (Adv. Energy Mater. 40/2024) Masthead: (Adv. Energy Mater. 40/2024) Reducing Voltage Loss via Dipole Tuning for Electron-Transport in Efficient and Stable Perovskite-Silicon Tandem Solar Cells (Adv. Energy Mater. 40/2024) Recrystallizing Sputtered NiOx for Improved Hole Extraction in Perovskite/Silicon Tandem Solar Cells UV-Triggered In Situ Formation of a Robust SEI on Black Phosphorus for Advanced Energy Storage: Boosting Efficiency and Safety via Rapid Charge Integration Plasticity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1