Xiaomei Li, Shan Yang, Jiaxue Zhang, Lan Xiao, Xiangchi Feng, Haobin Huang, Yang Xing
{"title":"Intestinal microbial community well explain larval growth than feed types.","authors":"Xiaomei Li, Shan Yang, Jiaxue Zhang, Lan Xiao, Xiangchi Feng, Haobin Huang, Yang Xing","doi":"10.1007/s00253-023-12857-x","DOIUrl":null,"url":null,"abstract":"<p><p>Black soldier fly larvae (BSFL) are considered a sustainable ingredient in livestock feed. However, addressing issues related to feed substrate and intestinal microbiota is essential to ensure optimal larval development. The aim of this study was to assess and elucidate the contribution of substrate nutrients and intestinal microbes to protein and fat synthesis in BSFL. The results showed that larvae that were fed high-quality feed (chicken feed) had high fat biomass, while larvae that were fed medium-quality feed (wheat bran) had high protein biomass. These results indicate that the original nutritional content of the feed cannot fully explain larval growth and nutrient utilization. However, the phenomenon could be explained by the functional metabolism of intestinal microbes. Chicken feed enhanced the fatty acid metabolism of middle intestine microorganisms in larvae within 0-7 days. This process facilitated larval fat synthesis. In contrast, wheat bran stimulated the amino acid metabolism in posterior intestine microorganisms in larvae within 4-7 days, leading to better protein synthesis. The findings of this study highlight the importance of the microbial functional potential in the intestine in regulating protein and lipid synthesis in BSFL, which is also influenced by the type of feed. In conclusion, our study suggests that both feed type and intestinal microbes play a crucial role in efficiently converting organic waste into high-quality insect protein and fat. Additionally, a mixed culture of chicken feed and wheat bran was found to be effective in promoting larval biomass while reducing feed costs. KEY POINTS: • Intestinal microbes explain BSFL growth better than feed substrates. • Chicken feed promotes fatty acid synthesis in the middle intestine • Wheat bran promotes amino acid synthesis in the posterior intestine.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"32"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-023-12857-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Black soldier fly larvae (BSFL) are considered a sustainable ingredient in livestock feed. However, addressing issues related to feed substrate and intestinal microbiota is essential to ensure optimal larval development. The aim of this study was to assess and elucidate the contribution of substrate nutrients and intestinal microbes to protein and fat synthesis in BSFL. The results showed that larvae that were fed high-quality feed (chicken feed) had high fat biomass, while larvae that were fed medium-quality feed (wheat bran) had high protein biomass. These results indicate that the original nutritional content of the feed cannot fully explain larval growth and nutrient utilization. However, the phenomenon could be explained by the functional metabolism of intestinal microbes. Chicken feed enhanced the fatty acid metabolism of middle intestine microorganisms in larvae within 0-7 days. This process facilitated larval fat synthesis. In contrast, wheat bran stimulated the amino acid metabolism in posterior intestine microorganisms in larvae within 4-7 days, leading to better protein synthesis. The findings of this study highlight the importance of the microbial functional potential in the intestine in regulating protein and lipid synthesis in BSFL, which is also influenced by the type of feed. In conclusion, our study suggests that both feed type and intestinal microbes play a crucial role in efficiently converting organic waste into high-quality insect protein and fat. Additionally, a mixed culture of chicken feed and wheat bran was found to be effective in promoting larval biomass while reducing feed costs. KEY POINTS: • Intestinal microbes explain BSFL growth better than feed substrates. • Chicken feed promotes fatty acid synthesis in the middle intestine • Wheat bran promotes amino acid synthesis in the posterior intestine.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.