Multi-omic approaches for host-microbiome data integration.

IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Gut Microbes Pub Date : 2024-01-01 Epub Date: 2024-01-02 DOI:10.1080/19490976.2023.2297860
Ashwin Chetty, Ran Blekhman
{"title":"Multi-omic approaches for host-microbiome data integration.","authors":"Ashwin Chetty, Ran Blekhman","doi":"10.1080/19490976.2023.2297860","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome interacts with the host through complex networks that affect physiology and health outcomes. It is becoming clear that these interactions can be measured across many different omics layers, including the genome, transcriptome, epigenome, metabolome, and proteome, among others. Multi-omic studies of the microbiome can provide insight into the mechanisms underlying host-microbe interactions. As more omics layers are considered, increasingly sophisticated statistical methods are required to integrate them. In this review, we provide an overview of approaches currently used to characterize multi-omic interactions between host and microbiome data. While a large number of studies have generated a deeper understanding of host-microbiome interactions, there is still a need for standardization across approaches. Furthermore, microbiome studies would also benefit from the collection and curation of large, publicly available multi-omics datasets.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766395/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2023.2297860","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiome interacts with the host through complex networks that affect physiology and health outcomes. It is becoming clear that these interactions can be measured across many different omics layers, including the genome, transcriptome, epigenome, metabolome, and proteome, among others. Multi-omic studies of the microbiome can provide insight into the mechanisms underlying host-microbe interactions. As more omics layers are considered, increasingly sophisticated statistical methods are required to integrate them. In this review, we provide an overview of approaches currently used to characterize multi-omic interactions between host and microbiome data. While a large number of studies have generated a deeper understanding of host-microbiome interactions, there is still a need for standardization across approaches. Furthermore, microbiome studies would also benefit from the collection and curation of large, publicly available multi-omics datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宿主-微生物组数据整合的多原子方法。
肠道微生物组通过复杂的网络与宿主相互作用,影响生理和健康结果。越来越清楚的是,这些相互作用可以在许多不同的全微观层面上进行测量,包括基因组、转录组、表观基因组、代谢组和蛋白质组等。对微生物组的多原子研究可以让人们深入了解宿主与微生物之间的相互作用机制。随着更多的 omics 层被考虑在内,需要越来越复杂的统计方法来整合它们。在本综述中,我们将概述目前用于描述宿主与微生物组数据之间多组学相互作用的方法。虽然大量研究加深了人们对宿主与微生物组相互作用的理解,但仍需要对各种方法进行标准化。此外,微生物组研究还将受益于大型、公开的多组学数据集的收集和整理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
期刊最新文献
Candida tropicalis-derived vitamin B3 exerts protective effects against intestinal inflammation by promoting IL-17A/IL-22-dependent epithelial barrier function The role and mechanism of gut-lung axis mediated bidirectional communication in the occurrence and development of chronic obstructive pulmonary disease. Morphine-induced intestinal microbial dysbiosis drives TLR-dependent IgA targeting of gram-positive bacteria and upregulation of CD11b and TLR2 on a sub-population of IgA+ B cells. Muropeptides and muropeptide transporters impact on host immune response. Fecal samples and rectal swabs adequately reflect the human colonic luminal microbiota.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1