{"title":"Small RNA-big impact: exosomal miRNAs in mitochondrial dysfunction in various diseases.","authors":"Xiaqing Li, Yi Han, Yu Meng, Lianghong Yin","doi":"10.1080/15476286.2023.2293343","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are multitasking organelles involved in maintaining the cell homoeostasis. Beyond its well-established role in cellular bioenergetics, mitochondria also function as signal organelles to propagate various cellular outcomes. However, mitochondria have a self-destructive arsenal of factors driving the development of diseases caused by mitochondrial dysfunction. Extracellular vesicles (EVs), a heterogeneous group of membranous nano-sized vesicles, are present in a variety of bodily fluids. EVs serve as mediators for intercellular interaction. Exosomes are a class of small EVs (30-100 nm) released by most cells. Exosomes carry various cargo including microRNAs (miRNAs), a class of short noncoding RNAs. Recent studies have closely associated exosomal miRNAs with various human diseases, including diseases caused by mitochondrial dysfunction, which are a group of complex multifactorial diseases and have not been comprehensively described. In this review, we first briefly introduce the characteristics of EVs. Then, we focus on possible mechanisms regarding exosome-mitochondria interaction through integrating signalling networks. Moreover, we summarize recent advances in the knowledge of the role of exosomal miRNAs in various diseases, describing how mitochondria are changed in disease status. Finally, we propose future research directions to provide a novel therapeutic strategy that could slow the disease progress mediated by mitochondrial dysfunction.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2023.2293343","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are multitasking organelles involved in maintaining the cell homoeostasis. Beyond its well-established role in cellular bioenergetics, mitochondria also function as signal organelles to propagate various cellular outcomes. However, mitochondria have a self-destructive arsenal of factors driving the development of diseases caused by mitochondrial dysfunction. Extracellular vesicles (EVs), a heterogeneous group of membranous nano-sized vesicles, are present in a variety of bodily fluids. EVs serve as mediators for intercellular interaction. Exosomes are a class of small EVs (30-100 nm) released by most cells. Exosomes carry various cargo including microRNAs (miRNAs), a class of short noncoding RNAs. Recent studies have closely associated exosomal miRNAs with various human diseases, including diseases caused by mitochondrial dysfunction, which are a group of complex multifactorial diseases and have not been comprehensively described. In this review, we first briefly introduce the characteristics of EVs. Then, we focus on possible mechanisms regarding exosome-mitochondria interaction through integrating signalling networks. Moreover, we summarize recent advances in the knowledge of the role of exosomal miRNAs in various diseases, describing how mitochondria are changed in disease status. Finally, we propose future research directions to provide a novel therapeutic strategy that could slow the disease progress mediated by mitochondrial dysfunction.
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy