{"title":"Hypoconulid loss in cercopithecins: Functional and developmental considerations","authors":"Keegan R. Selig","doi":"10.1016/j.jhevol.2023.103479","DOIUrl":null,"url":null,"abstract":"<div><p>Cercopithecins differ from papionins in lacking a M<sub>3</sub> hypoconulid. Although this loss may be related to dietary differences, the functional and developmental ramifications of hypoconulid loss are currently unclear. The following makes use of dental topographic analysis to quantify shape variation in a sample of cercopithecin M<sub>3</sub>s, as well as in a sample of <em>Macaca</em>, which has a hypoconulid. To help understand the consequences of hypoconulid loss, <em>Macaca</em> M<sub>3</sub>s were virtually cropped to remove the hypoconulid and were also subjected to dental topographic analysis. The patterning cascade model and the inhibitory cascade model attempt to explain variation in cusp pattern and molar proportions, respectively. These models have both previously been used to explain patterns of variation in cercopithecines, but have not been examined in the context of hypoconulid loss. For example, previous work suggests that earlier developing cusps impact the development of later developing cusps (i.e., the hypoconulid) and that cercopithecines do not conform to the predictions of the inhibitory cascade model in that the size of the molars is not linear moving distally. Results of the current study suggest that the loss of the hypoconulid is associated with a reduction in dental topography among cercopithecins, which is potentially related to diet, although the connection to diet is not necessarily clear. Results also suggest that the loss of the hypoconulid can be explained by the patterning cascade model, and that hypoconulid loss explains the apparent lack of support for the inhibitory cascade model among cercopithecines. These findings highlight the importance of a holistic approach to studying variation in molar proportions and developmental models.</p></div>","PeriodicalId":54805,"journal":{"name":"Journal of Human Evolution","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Evolution","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047248423001586","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cercopithecins differ from papionins in lacking a M3 hypoconulid. Although this loss may be related to dietary differences, the functional and developmental ramifications of hypoconulid loss are currently unclear. The following makes use of dental topographic analysis to quantify shape variation in a sample of cercopithecin M3s, as well as in a sample of Macaca, which has a hypoconulid. To help understand the consequences of hypoconulid loss, Macaca M3s were virtually cropped to remove the hypoconulid and were also subjected to dental topographic analysis. The patterning cascade model and the inhibitory cascade model attempt to explain variation in cusp pattern and molar proportions, respectively. These models have both previously been used to explain patterns of variation in cercopithecines, but have not been examined in the context of hypoconulid loss. For example, previous work suggests that earlier developing cusps impact the development of later developing cusps (i.e., the hypoconulid) and that cercopithecines do not conform to the predictions of the inhibitory cascade model in that the size of the molars is not linear moving distally. Results of the current study suggest that the loss of the hypoconulid is associated with a reduction in dental topography among cercopithecins, which is potentially related to diet, although the connection to diet is not necessarily clear. Results also suggest that the loss of the hypoconulid can be explained by the patterning cascade model, and that hypoconulid loss explains the apparent lack of support for the inhibitory cascade model among cercopithecines. These findings highlight the importance of a holistic approach to studying variation in molar proportions and developmental models.
期刊介绍:
The Journal of Human Evolution concentrates on publishing the highest quality papers covering all aspects of human evolution. The central focus is aimed jointly at paleoanthropological work, covering human and primate fossils, and at comparative studies of living species, including both morphological and molecular evidence. These include descriptions of new discoveries, interpretative analyses of new and previously described material, and assessments of the phylogeny and paleobiology of primate species. Submissions should address issues and questions of broad interest in paleoanthropology.