Chahat Mandviwala, Renesteban Forero Franco, Ivan Gogolev, Judith González-Arias, Teresa Berdugo Vilches, Isabel Cañete Cañete Vela, Henrik Thunman, Martin Seemann
{"title":"Method development and evaluation of product gas mixture from a semi-industrial scale fluidized bed steam cracker with GC-VUV","authors":"Chahat Mandviwala, Renesteban Forero Franco, Ivan Gogolev, Judith González-Arias, Teresa Berdugo Vilches, Isabel Cañete Cañete Vela, Henrik Thunman, Martin Seemann","doi":"10.1016/j.fuproc.2023.108030","DOIUrl":null,"url":null,"abstract":"<div><p>Steam cracking in fluidized beds offers an alternative to conventional steam cracking for sustainable hydrocarbon production. This approach has gained interest, particularly in the context of recycling plastics to generate valuable hydrocarbons. Integrating this process into existing petrochemical clusters necessitates a thorough characterization of the products derived from this new feedstock. This work focuses on addressing the challenges associated with species quantification and characterization time for assessing the product mixture resulting from a steam cracking process. The experiments were conducted in a semi-industrial scale dual fluidized bed steam cracker, utilizing polyethylene as the feedstock. To sample species spanning from C1 to C18, cooling, scrubbing, and adsorption were introduced. These steps were integrated with GC-VUV (Gas Chromatography with Vacuum Ultraviolet Spectroscopy) and other widely recognized analytical methods to quantify the sampled species. The primary focus was on GC-VUV analysis as a suitable characterization method for identifying and quantifying C4 to C18 species, which can constitute up to 35% of the product mixture obtained from polyethylene steam cracking (750 °C to 850 °C). Quantifying C6 to C18 hydrocarbons becomes the time-critical step, with GC-VUV potentially achieving this in 1/6th of the analysis time and with relatively optimal quantification compared to the traditional characterization methods.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"253 ","pages":"Article 108030"},"PeriodicalIF":7.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382023003788/pdfft?md5=b0857200825322bcb896cc573d0e9f64&pid=1-s2.0-S0378382023003788-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382023003788","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Steam cracking in fluidized beds offers an alternative to conventional steam cracking for sustainable hydrocarbon production. This approach has gained interest, particularly in the context of recycling plastics to generate valuable hydrocarbons. Integrating this process into existing petrochemical clusters necessitates a thorough characterization of the products derived from this new feedstock. This work focuses on addressing the challenges associated with species quantification and characterization time for assessing the product mixture resulting from a steam cracking process. The experiments were conducted in a semi-industrial scale dual fluidized bed steam cracker, utilizing polyethylene as the feedstock. To sample species spanning from C1 to C18, cooling, scrubbing, and adsorption were introduced. These steps were integrated with GC-VUV (Gas Chromatography with Vacuum Ultraviolet Spectroscopy) and other widely recognized analytical methods to quantify the sampled species. The primary focus was on GC-VUV analysis as a suitable characterization method for identifying and quantifying C4 to C18 species, which can constitute up to 35% of the product mixture obtained from polyethylene steam cracking (750 °C to 850 °C). Quantifying C6 to C18 hydrocarbons becomes the time-critical step, with GC-VUV potentially achieving this in 1/6th of the analysis time and with relatively optimal quantification compared to the traditional characterization methods.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.