High sensitivity and ultra-low concentration range photoacoustic spectroscopy based on trapezoid compound ellipsoid resonant photoacoustic cell and partial least square
Qiaoyun Wang , Shunyuan Xu , Ziheng Zhu , Jilong Wang , Xin Zou , Chu Zhang , Qiang Liu
{"title":"High sensitivity and ultra-low concentration range photoacoustic spectroscopy based on trapezoid compound ellipsoid resonant photoacoustic cell and partial least square","authors":"Qiaoyun Wang , Shunyuan Xu , Ziheng Zhu , Jilong Wang , Xin Zou , Chu Zhang , Qiang Liu","doi":"10.1016/j.pacs.2023.100583","DOIUrl":null,"url":null,"abstract":"<div><p>A high sensitivity and ultra-low concentration range photoacoustic spectroscopy (PAS) gas detection system, which was based on a novel trapezoid compound ellipsoid resonant photoacoustic cell (TCER-PAC) and partial least square (PLS), was proposed to detect acetylene (C<sub>2</sub>H<sub>2</sub>) gas. In the concentration range of 0.5 ppm ∼ 10.0 ppm, the limit of detection (LOD) values of TCER-PAC-based PAS system without data processing was 66.4 ppb, which was lower than that of the traditional trapezoid compound cylindrical resonant photoacoustic cell (TCCR-PAC). The experimental results indicated that the TCER-PAC had higher sensitivity than of TCCR-PAC. Within the concentration range of 12.5 ppb ∼ 125.0 ppb, the LOD and limit of quantification (LOQ) of TCER-PAC-based PAS system combined with PLS regression algorithm were 1.1 ppb and 3.7 ppb, respectively. The results showed that higher detection sensitivity and lower LOD were obtained by PAS system with TCER-PAC and PLS than that of TCCR-PAC-based PAS system.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"35 ","pages":"Article 100583"},"PeriodicalIF":7.1000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213597923001362/pdfft?md5=43741e7d877ecd3cb000992aa09cafd8&pid=1-s2.0-S2213597923001362-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597923001362","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A high sensitivity and ultra-low concentration range photoacoustic spectroscopy (PAS) gas detection system, which was based on a novel trapezoid compound ellipsoid resonant photoacoustic cell (TCER-PAC) and partial least square (PLS), was proposed to detect acetylene (C2H2) gas. In the concentration range of 0.5 ppm ∼ 10.0 ppm, the limit of detection (LOD) values of TCER-PAC-based PAS system without data processing was 66.4 ppb, which was lower than that of the traditional trapezoid compound cylindrical resonant photoacoustic cell (TCCR-PAC). The experimental results indicated that the TCER-PAC had higher sensitivity than of TCCR-PAC. Within the concentration range of 12.5 ppb ∼ 125.0 ppb, the LOD and limit of quantification (LOQ) of TCER-PAC-based PAS system combined with PLS regression algorithm were 1.1 ppb and 3.7 ppb, respectively. The results showed that higher detection sensitivity and lower LOD were obtained by PAS system with TCER-PAC and PLS than that of TCCR-PAC-based PAS system.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.