Medium Pressure Plasma Processing of Fused Silica: A Comparative Study for Material Removal Rate

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-01-03 DOI:10.1007/s11090-023-10440-w
{"title":"Medium Pressure Plasma Processing of Fused Silica: A Comparative Study for Material Removal Rate","authors":"","doi":"10.1007/s11090-023-10440-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The use of fused silica material is crucial in various scientific applications; however, its chemical inertness and brittle nature pose challenges to machining and fabrication processes. The present study introduced a dynamic plasma flow system for medium-pressure plasma processing of fused silica substrate to address this issue. The results indicate that the new plasma flow system can significantly enhance the material removal rate compared to existing systems, with a 300% increase in material removal rate. Importantly, this process enables a sustained linear material removal rate, essential for long process durations. Despite the higher material removal rate, there is no deterioration in surface finish observed, and in fact, an improvement in surface integrity is noted after plasma processing. Confocal Raman microscopy characterization further confirms this improvement, revealing reduced stress-induced defect peaks compared to a confined plasma system.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11090-023-10440-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of fused silica material is crucial in various scientific applications; however, its chemical inertness and brittle nature pose challenges to machining and fabrication processes. The present study introduced a dynamic plasma flow system for medium-pressure plasma processing of fused silica substrate to address this issue. The results indicate that the new plasma flow system can significantly enhance the material removal rate compared to existing systems, with a 300% increase in material removal rate. Importantly, this process enables a sustained linear material removal rate, essential for long process durations. Despite the higher material removal rate, there is no deterioration in surface finish observed, and in fact, an improvement in surface integrity is noted after plasma processing. Confocal Raman microscopy characterization further confirms this improvement, revealing reduced stress-induced defect peaks compared to a confined plasma system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熔融石英的中压等离子处理:材料去除率比较研究
摘要 在各种科学应用中,熔融石英材料的使用至关重要;然而,其化学惰性和脆性给加工和制造工艺带来了挑战。本研究引入了一种动态等离子体流系统,用于熔融石英基材的中压等离子体加工,以解决这一问题。结果表明,与现有系统相比,新的等离子流系统能显著提高材料去除率,材料去除率提高了 300%。重要的是,这种工艺能够实现持续的线性材料去除率,这对长时间的工艺过程至关重要。尽管材料去除率提高了,但表面光洁度却没有下降,事实上,等离子加工后表面完整性得到了改善。共焦拉曼显微镜表征进一步证实了这一改进,显示与封闭等离子系统相比,应力引起的缺陷峰有所减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Non-Oxidative Coupling of Methane via Plasma-Catalysis Over M/γ-Al2O3 Catalysts (M = Ni, Fe, Rh, Pt and Pd): Impact of Active Metal and Noble Gas Co-Feeding The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water A Biphasic Plasma Microreactor for Pollutants Degradation in Water Ammonia Synthesis via Membrane Dielectric-Barrier Discharge Reactor Integrated with Metal Catalyst Enhancement of W Nanoparticles Synthesis by Injecting H2 in a Magnetron Sputtering Gas Aggregation Cluster Source Operated in Ar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1