Nasser Ghaderi, Navid Hasheminejad, Ali Golmohammadi, Bart Ribbens, Joris Dirckx, Steve Vanlanduit
{"title":"Material Characterization Using Cold Atmospheric Plasma Excitation and Laser Vibrometry","authors":"Nasser Ghaderi, Navid Hasheminejad, Ali Golmohammadi, Bart Ribbens, Joris Dirckx, Steve Vanlanduit","doi":"10.1007/s11090-025-10541-8","DOIUrl":null,"url":null,"abstract":"<div><p>Cold atmospheric plasma (CAP) finds numerous applications across various sectors, including industry (e.g. surface modification) and medicine (e.g. tissue regeneration, wound healing, oncology, and dentistry). However, understanding the mechanical properties of materials undergoing CAP treatment is of great importance, particularly for applications involving changes in material properties. This study aims to utilize CAP as an excitation device for assessing the mechanical properties of a polymethyl methacrylate (PMMA) sample. CAP was employed to induce vibrations on a PMMA sample around its resonance frequency, and the resulting vibrations were measured by a scanning laser doppler vibrometer. The elastic modulus of the PMMA sample was then calculated based on the stress and strain profiles obtained from the measured vibrations. The obtained elastic modulus value of 4.87 GPa showed excellent agreement with the 4.83 GPa value obtained using other excitation devices, indicating the reliability of CAP in mechanical characterization. This study is the first step toward potential applications that can break new ground in the use of CAP in monitoring and characterization of mechanical properties during CAP treatment (e.g. surface treatment), paving the way for enhanced control and optimization of CAP-based processes in various applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 2","pages":"503 - 514"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10541-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cold atmospheric plasma (CAP) finds numerous applications across various sectors, including industry (e.g. surface modification) and medicine (e.g. tissue regeneration, wound healing, oncology, and dentistry). However, understanding the mechanical properties of materials undergoing CAP treatment is of great importance, particularly for applications involving changes in material properties. This study aims to utilize CAP as an excitation device for assessing the mechanical properties of a polymethyl methacrylate (PMMA) sample. CAP was employed to induce vibrations on a PMMA sample around its resonance frequency, and the resulting vibrations were measured by a scanning laser doppler vibrometer. The elastic modulus of the PMMA sample was then calculated based on the stress and strain profiles obtained from the measured vibrations. The obtained elastic modulus value of 4.87 GPa showed excellent agreement with the 4.83 GPa value obtained using other excitation devices, indicating the reliability of CAP in mechanical characterization. This study is the first step toward potential applications that can break new ground in the use of CAP in monitoring and characterization of mechanical properties during CAP treatment (e.g. surface treatment), paving the way for enhanced control and optimization of CAP-based processes in various applications.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.