{"title":"A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact human-machine interface","authors":"Tongkuai Li, Tingting Zhao, Hao Zhang, Li Yuan, Congcong Cheng, Junshuai Dai, Longwei Xue, Jixing Zhou, Hai Liu, Luqiao Yin, Jianhua Zhang","doi":"10.1038/s41528-023-00290-z","DOIUrl":null,"url":null,"abstract":"Noncontact humidity sensor overcomes the limitations of its contact sensing counterparts, including mechanical wear and cross infection, which becomes a promising candidate in healthcare and human-machine interface application. However, current humidity sensors still suffer the ubiquitous issue of uncomfortable wear and skin irritation hindering the long-term use. In this study, we report a skin-conformal and breathable humidity sensor assembled by anchoring MXenes-based composite into electrospun elastomer nanofibers coated with a patterned electrode. This composite is highly sensitive to the water molecules due to its large specific surface area and abundant water-absorbing hydroxyl groups, while the elastomeric nanofibers provide an ultrathin, highly flexible, and permeable substrate to support the functional materials and electrodes. This sensor presents not only excellent air permeability (0.078 g cm−2 d−1), high sensitivity (S = 704), and fast response/recovery (0.9 s/0.9 s), but also high skin conformability and biocompatibility. Furthermore, this humidity sensor is confirmed to realize the recognition of motional states and emotional modes, which provides a way for the advanced noncontact human-machine interface.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00290-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00290-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Noncontact humidity sensor overcomes the limitations of its contact sensing counterparts, including mechanical wear and cross infection, which becomes a promising candidate in healthcare and human-machine interface application. However, current humidity sensors still suffer the ubiquitous issue of uncomfortable wear and skin irritation hindering the long-term use. In this study, we report a skin-conformal and breathable humidity sensor assembled by anchoring MXenes-based composite into electrospun elastomer nanofibers coated with a patterned electrode. This composite is highly sensitive to the water molecules due to its large specific surface area and abundant water-absorbing hydroxyl groups, while the elastomeric nanofibers provide an ultrathin, highly flexible, and permeable substrate to support the functional materials and electrodes. This sensor presents not only excellent air permeability (0.078 g cm−2 d−1), high sensitivity (S = 704), and fast response/recovery (0.9 s/0.9 s), but also high skin conformability and biocompatibility. Furthermore, this humidity sensor is confirmed to realize the recognition of motional states and emotional modes, which provides a way for the advanced noncontact human-machine interface.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.