Ultrafast switching to zero field topological spin textures in ferrimagnetic TbFeCo films†

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-01-05 DOI:10.1039/D3NR04529C
Kaixin Zhu, Linzhu Bi, Yongzhao Zhang, Dingguo Zheng, Dong Yang, Jun Li, Huanfang Tian, Jianwang Cai, Huaixin Yang, Ying Zhang and Jianqi Li
{"title":"Ultrafast switching to zero field topological spin textures in ferrimagnetic TbFeCo films†","authors":"Kaixin Zhu, Linzhu Bi, Yongzhao Zhang, Dingguo Zheng, Dong Yang, Jun Li, Huanfang Tian, Jianwang Cai, Huaixin Yang, Ying Zhang and Jianqi Li","doi":"10.1039/D3NR04529C","DOIUrl":null,"url":null,"abstract":"<p >The capability of femtosecond (fs) laser pulses to manipulate topological spin textures on a very short time scale is sparking considerable interest. This article presents the creation of high density zero field topological spin textures by fs laser excitation in ferrimagnetic TbFeCo amorphous films. The topological spin textures are demonstrated to emerge under fs laser pulse excitation through a unique ultrafast nucleation mechanism, rather than thermal effects. Notably, large intrinsic uniaxial anisotropy could substitute the external magnetic field for the creation and stabilization of topological spin textures, which is further verified by the corresponding micromagnetic simulation. The ultrafast switching between topological trivial and nontrivial magnetic states is realized at an optimum magnitude of magnetic field and laser fluence. Our results would broaden the options to generate zero-field topological spin textures from versatile magnetic states and provides a new perspective for ultrafast switching of 0/1 magnetic states in spintronic devices.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 6","pages":" 3133-3143"},"PeriodicalIF":5.8000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/nr/d3nr04529c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d3nr04529c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The capability of femtosecond (fs) laser pulses to manipulate topological spin textures on a very short time scale is sparking considerable interest. This article presents the creation of high density zero field topological spin textures by fs laser excitation in ferrimagnetic TbFeCo amorphous films. The topological spin textures are demonstrated to emerge under fs laser pulse excitation through a unique ultrafast nucleation mechanism, rather than thermal effects. Notably, large intrinsic uniaxial anisotropy could substitute the external magnetic field for the creation and stabilization of topological spin textures, which is further verified by the corresponding micromagnetic simulation. The ultrafast switching between topological trivial and nontrivial magnetic states is realized at an optimum magnitude of magnetic field and laser fluence. Our results would broaden the options to generate zero-field topological spin textures from versatile magnetic states and provides a new perspective for ultrafast switching of 0/1 magnetic states in spintronic devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁磁性铽钴薄膜中零场拓扑自旋纹理的超快切换
飞秒(fs)激光脉冲能够在极短的时间尺度内操纵拓扑自旋纹理,这引发了人们极大的兴趣。本文介绍了利用 fs 激光在铁磁性铽钴非晶薄膜中产生高密度零场拓扑自旋纹理的过程。拓扑自旋纹理是通过一种独特的超快成核机制,而不是热激活效应,在 fs 激光脉冲激发下产生的。值得注意的是,大的固有单轴各向异性可以替代外部磁场来产生和稳定拓扑自旋纹理,这一点通过相应的微磁模拟得到了进一步验证。在最佳磁场强度和激光通量下,拓扑琐碎磁态和非琐碎磁态之间的超快切换得以实现。我们的研究成果将拓宽从多功能磁态生成零场拓扑自旋纹理的选择范围,并为自旋电子器件中 0/1 磁态的超快切换提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Amorphous FeP@Porous Carbon Nanofibers with Sterically Conductive Networks for Stable Potassium-ions Storage Combined effects of electrode morphology and electrolyte composition on single H2 gas bubble detachment during hydrogen evolution reaction Spin Effects in Metal Halide Perovskite Semiconductors First-principles methods for unraveling the structure–catalytic activity relationship and mechanism of δ-MnO2-supported metal cluster catalysts in ambient temperature benzene to CO2 degradation Integration of Two-Dimensional WS₂ in Flexible Textile Triboelectric Nanogenerators via Electronic Dyeing for Self-Powered Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1