{"title":"Enhancing ossicular chain reconstruction through finite element analysis and advanced additive manufacturing: A review","authors":"Masoud Mohseni-Dargah , Christopher Pastras , Payal Mukherjee , Khosro Khajeh , Mohsen Asadnia","doi":"10.1016/j.bprint.2023.e00328","DOIUrl":null,"url":null,"abstract":"<div><p>Middle ear ossicles transfer and amplify sound waves from the Tympanic Membrane (TM) to the inner ear and function as impedance transformers to overcome impedance mismatches between the outer air and cochlear fluid. Several factors, including trauma, otitis media, chronic middle ear disease, or cholesteatoma, can lead to ossicular erosion, causing conductive hearing loss (CHL). A common surgical approach to address ossicular erosion is Ossicular Chain Reconstruction (OCR), also known as ossiculoplasty, wherein a middle ear prosthesis is inserted in place of the damaged ossicle(s). Unfortunately, studies indicate poor long-term outcomes in OCR as current techniques fail to accurately reproduce the natural anatomy and function of the patients' middle ear, leading to excessive force transmission and prosthesis extrusion. One promising first-order approach is computational modelling paired with 3D printing, which allows multi-parametric control to optimise and fabricate ossicular implants customised to the patient's middle ear anatomy. This customisation approach holds the promise of enhancing hearing outcomes after prosthesis implantation, as it replicates the natural sound transmission mechanism and protective effect of the normal ossicles. There is a particular need for such an approach, given no clear standards exist for prosthesis optimisation, potentially affecting patient care and hearing outcomes. This paper provides a comprehensive review of various middle ear implants based on their materials and evaluates the feasibility of Finite Element Method (FEM)-based design and customisation of 3D printing for middle ear prostheses. To improve surgical outcomes, the optimisation of prosthesis design is crucial. Enhanced hearing restoration can be achieved through more efficient and personalised prosthesis designs, leveraging FE analysis and advanced additive manufacturing, notably 3D printing.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"38 ","pages":"Article e00328"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405886623000714/pdfft?md5=22a8cdf3fea7484db4b9fb469550a762&pid=1-s2.0-S2405886623000714-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886623000714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Middle ear ossicles transfer and amplify sound waves from the Tympanic Membrane (TM) to the inner ear and function as impedance transformers to overcome impedance mismatches between the outer air and cochlear fluid. Several factors, including trauma, otitis media, chronic middle ear disease, or cholesteatoma, can lead to ossicular erosion, causing conductive hearing loss (CHL). A common surgical approach to address ossicular erosion is Ossicular Chain Reconstruction (OCR), also known as ossiculoplasty, wherein a middle ear prosthesis is inserted in place of the damaged ossicle(s). Unfortunately, studies indicate poor long-term outcomes in OCR as current techniques fail to accurately reproduce the natural anatomy and function of the patients' middle ear, leading to excessive force transmission and prosthesis extrusion. One promising first-order approach is computational modelling paired with 3D printing, which allows multi-parametric control to optimise and fabricate ossicular implants customised to the patient's middle ear anatomy. This customisation approach holds the promise of enhancing hearing outcomes after prosthesis implantation, as it replicates the natural sound transmission mechanism and protective effect of the normal ossicles. There is a particular need for such an approach, given no clear standards exist for prosthesis optimisation, potentially affecting patient care and hearing outcomes. This paper provides a comprehensive review of various middle ear implants based on their materials and evaluates the feasibility of Finite Element Method (FEM)-based design and customisation of 3D printing for middle ear prostheses. To improve surgical outcomes, the optimisation of prosthesis design is crucial. Enhanced hearing restoration can be achieved through more efficient and personalised prosthesis designs, leveraging FE analysis and advanced additive manufacturing, notably 3D printing.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.