FK506 binding protein like, FKBPL, as a novel therapeutic target in 2D and 3D bioprinted, models of cardiac fibrosis

Q1 Computer Science Bioprinting Pub Date : 2025-02-04 DOI:10.1016/j.bprint.2025.e00397
Michael Chhor , Shreya Barman , Fatemeh Heidari , Amy L. Bottomley , Tracy Robson , Kristine McGrath , Lana McClements
{"title":"FK506 binding protein like, FKBPL, as a novel therapeutic target in 2D and 3D bioprinted, models of cardiac fibrosis","authors":"Michael Chhor ,&nbsp;Shreya Barman ,&nbsp;Fatemeh Heidari ,&nbsp;Amy L. Bottomley ,&nbsp;Tracy Robson ,&nbsp;Kristine McGrath ,&nbsp;Lana McClements","doi":"10.1016/j.bprint.2025.e00397","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cardiac fibrosis characterised by increased collagen deposition and extracellular matrix (ECM) remodeling is one of the main causes of heart failure. Inflammation and hypoxia are key processes leading to cardiac fibrosis although the mechanisms are poorly understood. In this study, we developed an innovative 3D bioprinted model of cardiac fibrosis using tunable matrices. The role of an anti-angiogenic protein, FK506 binding protein like (FKBPL) was then elucidated, for the first time, using both 2D and 3D bioprinted, models of cardiac fibrosis.</div></div><div><h3>Methods</h3><div>3D bioprinted model of cardiac fibrosis was developed using fetal fibroblast cells (HFF08), customised ECM cardiac components and pro-fibrotic/hypoxic factors (TGF-β, 10 ng/ml, DMOG, 1 mM) ± FKBPL mimetic (AD-01, 100 mM). In parallel, 2D <em>in vitro</em> models were also employed.</div></div><div><h3>Results</h3><div>In the 3D bioprinted model, fibroblasts formed networks spontaneously, which were stimulated by all treatments (p &lt; 0.05–0.0001). This was in conjunction with a trend towards reduced FKBPL expression, particularly in the presence of DMOG/AD-01 treatment. In 2D cell culture, AD-01 potentiated TGF-β-induced <em>col1a1</em> (p &lt; 0.0001) and <em>mmp2</em> mRNA (p &lt; 0.05) expression whereas DMOG or reduced FKBPL expression with AD-01 abrogated this (p &lt; 0.05–0.001). Following siRNA FKBPL transfection, α-SMA was reduced (p &lt; 0.05).</div></div><div><h3>Conclusion</h3><div>This 3D bioprinted model of cardiac fibrosis in conjunction with 2D cell models could be used for biomarker and drug therapy screening towards accelerating the development of treatments for this hard-to-treat condition. Low FKBPL expression could be protective in cardiac fibrosis through the reduction in collagen production and α-SMA expression, or TGF-β/HIF-1α-mediated effects. Therapeutic strategies that inhibit FKBPL should be explored to abrogate cardiac fibrosis.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"47 ","pages":"Article e00397"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886625000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Cardiac fibrosis characterised by increased collagen deposition and extracellular matrix (ECM) remodeling is one of the main causes of heart failure. Inflammation and hypoxia are key processes leading to cardiac fibrosis although the mechanisms are poorly understood. In this study, we developed an innovative 3D bioprinted model of cardiac fibrosis using tunable matrices. The role of an anti-angiogenic protein, FK506 binding protein like (FKBPL) was then elucidated, for the first time, using both 2D and 3D bioprinted, models of cardiac fibrosis.

Methods

3D bioprinted model of cardiac fibrosis was developed using fetal fibroblast cells (HFF08), customised ECM cardiac components and pro-fibrotic/hypoxic factors (TGF-β, 10 ng/ml, DMOG, 1 mM) ± FKBPL mimetic (AD-01, 100 mM). In parallel, 2D in vitro models were also employed.

Results

In the 3D bioprinted model, fibroblasts formed networks spontaneously, which were stimulated by all treatments (p < 0.05–0.0001). This was in conjunction with a trend towards reduced FKBPL expression, particularly in the presence of DMOG/AD-01 treatment. In 2D cell culture, AD-01 potentiated TGF-β-induced col1a1 (p < 0.0001) and mmp2 mRNA (p < 0.05) expression whereas DMOG or reduced FKBPL expression with AD-01 abrogated this (p < 0.05–0.001). Following siRNA FKBPL transfection, α-SMA was reduced (p < 0.05).

Conclusion

This 3D bioprinted model of cardiac fibrosis in conjunction with 2D cell models could be used for biomarker and drug therapy screening towards accelerating the development of treatments for this hard-to-treat condition. Low FKBPL expression could be protective in cardiac fibrosis through the reduction in collagen production and α-SMA expression, or TGF-β/HIF-1α-mediated effects. Therapeutic strategies that inhibit FKBPL should be explored to abrogate cardiac fibrosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
期刊最新文献
FK506 binding protein like, FKBPL, as a novel therapeutic target in 2D and 3D bioprinted, models of cardiac fibrosis Nanocomposite hydrogel-based bioinks composed of a fucose-rich polysaccharide and nanocellulose fibers for 3D-bioprinting applications 4D printing in skin tissue engineering: A revolutionary approach to enhance wound healing and combat infections Zirconia-calcium silicate bioactive composites for dental applications using DLP additive manufacturing Modeling of oral squamous cell carcinoma microenvironment- A 3D bioprinting approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1