Investigating the Growth of Bacteria using Double Sigmoid Model with Reparameterization

Masithoh Yessi Rochayani, Dahlia Gladiola Rurina Menufandu, Rahmila Dapa
{"title":"Investigating the Growth of Bacteria using Double Sigmoid Model with Reparameterization","authors":"Masithoh Yessi Rochayani, Dahlia Gladiola Rurina Menufandu, Rahmila Dapa","doi":"10.56225/ijgoia.v2i4.239","DOIUrl":null,"url":null,"abstract":"The growth of an organism can be modeled using a growth curve. However, bacteria's growth pattern differs from other organisms. Bacterial growth is divided into four phases: lag, logarithmic, stationary, and death. The experts re-parameterized the growth curve to match the growth phase of the bacteria. Bacterial growth patterns generally do not show a single sigmoid pattern but form two curves. Therefore, the double sigmoid model is more suitable. This study modeled the growth of the Pseudomonas putida bacteria by observing the optical density of the medium. Model parameters are estimated using the Non-Linear Least Square (NLS) method with the Gauss-Newton algorithm. The modeling results show that the double sigmoid model fits the growth curve of Pseudomonas putida better than the single sigmoid model. The Double Logistic model outperforms all models with the highest adjusted R2 and the smallest RMSE, AIC, and BIC values.","PeriodicalId":344452,"journal":{"name":"International Journal of Global Optimization and Its Application","volume":"22 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Global Optimization and Its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56225/ijgoia.v2i4.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of an organism can be modeled using a growth curve. However, bacteria's growth pattern differs from other organisms. Bacterial growth is divided into four phases: lag, logarithmic, stationary, and death. The experts re-parameterized the growth curve to match the growth phase of the bacteria. Bacterial growth patterns generally do not show a single sigmoid pattern but form two curves. Therefore, the double sigmoid model is more suitable. This study modeled the growth of the Pseudomonas putida bacteria by observing the optical density of the medium. Model parameters are estimated using the Non-Linear Least Square (NLS) method with the Gauss-Newton algorithm. The modeling results show that the double sigmoid model fits the growth curve of Pseudomonas putida better than the single sigmoid model. The Double Logistic model outperforms all models with the highest adjusted R2 and the smallest RMSE, AIC, and BIC values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用重参数化双西格码模型研究细菌的生长过程
生物的生长可以用生长曲线来模拟。然而,细菌的生长模式与其他生物不同。细菌的生长分为四个阶段:滞后期、对数期、静止期和死亡期。专家们对生长曲线进行了重新参数化,以符合细菌的生长阶段。细菌的生长模式一般不会呈现单一的西格玛模式,而是形成两条曲线。因此,双sigmoid 模型更为合适。本研究通过观察培养基的光密度来建立假单胞菌的生长模型。模型参数采用高斯-牛顿算法的非线性最小平方(NLS)方法进行估计。建模结果表明,双 Sigmoid 模型比单 Sigmoid 模型更适合假单胞菌的生长曲线。双 Logistic 模型的调整 R2 最高,RMSE、AIC 和 BIC 值最小,优于所有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating the Growth of Bacteria using Double Sigmoid Model with Reparameterization Identifying the Growth Centers in Banda Aceh City, Indonesia: Before and After Tsunami The Role of Social Media Adoption and Its Impact on the Business Performance of Craftsmen in Tulung Agung The Innovation of Malaysia National Costume at Miss Universe: Memoir Goddess of Kumang Modeling and Optimization of Cost-Based Hybrid Flow Shop Scheduling Problem using Metaheuristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1