Hamid Dalvand, Seyed Mohammad Mahdi Hamdi, Fatemeh Nori kotanaee, Hassan Ahmadvand
{"title":"Phytochemicals Analysis and Antioxidant Potential of Hydroalcoholic Extracts of Fresh Fruits of Pistacia atlantica and Pistacia khinjuk","authors":"Hamid Dalvand, Seyed Mohammad Mahdi Hamdi, Fatemeh Nori kotanaee, Hassan Ahmadvand","doi":"10.14719/pst.2853","DOIUrl":null,"url":null,"abstract":"Medicinal plants are known for containing potent antioxidants, primarily due to the presence of phytochemical components with diverse biological properties. In this study, we assessed the chemical constituents and antioxidant potential of Pistacia atlantica and P. khinjuk. The essential oils from P. atlantica and P. khinjuk oleoresin were obtained through hydrodistillation, and their chemical constituents were identified using gas chromatography-mass spectrometry (GC-MS). Additionally, we evaluated the total phenolic and flavonoid contents, total antioxidant activity, and free radical quenching potentials of hydroalcoholic extracts from P. atlantica and P. khinjuk. These assessments were performed using the Folin-Ciocalteu method, aluminum chloride method, phosphomolybdate test, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition assay (Half-maximal inhibitory concentration (IC50 value)), respectively. The results revealed that the major phytochemical components in P. atlantica essential oil were ?-pinene, camphene, ?-pinene, D-limonene, cyclohexene, and careen. Additionally, P. khinjuk essential oil contained ?-pinene, ?-Pinene, trans-verbnol, bicyclo(3.1.1.)heptan, verbenene, camphene, D-limonene, and ?-campholenal. Furthermore, the total phenols and flavonoids content of P. atlantica were higher than those of P. khinjuk. However, the total antioxidant capacity was significantly greater in P. khinjuk than in P. atlantica. The IC50 value (DPPH assay) was also significantly higher in P. khinjuk compared to P. atlantica. Although the essential oils of both plants exhibited antioxidant effects, P. atlantica essential oils demonstrated superior antioxidant effects compared to P. khinjuk. In conclusion, the presence of abundant phytochemical components, such as monoterpenes, was observed in both the plants. These findings suggest that P. atlantica and P. khinjuk generally possess considerable antioxidant activity.","PeriodicalId":20236,"journal":{"name":"Plant Science Today","volume":"109 36","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14719/pst.2853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Medicinal plants are known for containing potent antioxidants, primarily due to the presence of phytochemical components with diverse biological properties. In this study, we assessed the chemical constituents and antioxidant potential of Pistacia atlantica and P. khinjuk. The essential oils from P. atlantica and P. khinjuk oleoresin were obtained through hydrodistillation, and their chemical constituents were identified using gas chromatography-mass spectrometry (GC-MS). Additionally, we evaluated the total phenolic and flavonoid contents, total antioxidant activity, and free radical quenching potentials of hydroalcoholic extracts from P. atlantica and P. khinjuk. These assessments were performed using the Folin-Ciocalteu method, aluminum chloride method, phosphomolybdate test, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition assay (Half-maximal inhibitory concentration (IC50 value)), respectively. The results revealed that the major phytochemical components in P. atlantica essential oil were ?-pinene, camphene, ?-pinene, D-limonene, cyclohexene, and careen. Additionally, P. khinjuk essential oil contained ?-pinene, ?-Pinene, trans-verbnol, bicyclo(3.1.1.)heptan, verbenene, camphene, D-limonene, and ?-campholenal. Furthermore, the total phenols and flavonoids content of P. atlantica were higher than those of P. khinjuk. However, the total antioxidant capacity was significantly greater in P. khinjuk than in P. atlantica. The IC50 value (DPPH assay) was also significantly higher in P. khinjuk compared to P. atlantica. Although the essential oils of both plants exhibited antioxidant effects, P. atlantica essential oils demonstrated superior antioxidant effects compared to P. khinjuk. In conclusion, the presence of abundant phytochemical components, such as monoterpenes, was observed in both the plants. These findings suggest that P. atlantica and P. khinjuk generally possess considerable antioxidant activity.