Mehmet Hacibeyoglu, Merve Çeli̇k, Özlem ERDAŞ ÇİÇEK
{"title":"K En Yakın Komşu Algoritması ile Binalarda Enerji Verimliliği Tahmini","authors":"Mehmet Hacibeyoglu, Merve Çeli̇k, Özlem ERDAŞ ÇİÇEK","doi":"10.47112/neufmbd.2023.10","DOIUrl":null,"url":null,"abstract":"Binaların ısıtma ve soğutma yükleri, bir binanın içindeki hava sıcaklığının belirli bir sıcaklıkta tutmak için gereken enerji miktarlarını ifade eder. Bu yükler, binanın yalıtımı, boyutu, şekli, konumu, kullanılan malzemeler ve ısıtma sistemi gibi birçok faktöre bağlıdır. Toplumsal refahın artırılmasında vazgeçilmez bir etken olan enerjinin giderek önem kazandığı günümüzde binalardaki enerji tüketiminin azaltılması, hem çevresel sürdürülebilirlik hem de ekonomik açıdan önemlidir. Bu çalışmada denetimli makine öğrenmesi algoritmalarından doğrusal regresyon ve k en yakın komşu algoritmaları kullanılarak bir regresyon problemi olan binalarda enerji verimliliği tahmini yapacak bir model geliştirilmiştir. Deneysel çalışmalar, 12 faklı binadan elde edilen sekiz adet şart özelliğe ve ısıtma yükü ve soğutma yükü olmak üzere iki sınıf değerine sahip toplamda 768 adet veri barındıran enerji verimliği veri kümesi kullanılarak gerçekleştirilmiştir. Çalışmada k en yakın komşu algoritmasının k parametre değeri optimize edilerek performansı arttırılmıştır. Elde edilen deneysel sonuçlara göre k en yakın komşu algoritması doğrusal regresyon algoritmasına göre çok daha başarılı ve %96’lar seviyesinde tahminler gerçekleştirmiştir. Çalışma sonunda elde edilen denetimli makine öğrenmesi modeli ile binaların enerji analizleri kolaylıkla yapılabilecek ve elde edilen analiz sonuçları enerji verimliliğinin arttırılabilmesi için geliştirilecek politikalarda kullanılabilecektir.","PeriodicalId":184558,"journal":{"name":"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi","volume":"10 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47112/neufmbd.2023.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Binaların ısıtma ve soğutma yükleri, bir binanın içindeki hava sıcaklığının belirli bir sıcaklıkta tutmak için gereken enerji miktarlarını ifade eder. Bu yükler, binanın yalıtımı, boyutu, şekli, konumu, kullanılan malzemeler ve ısıtma sistemi gibi birçok faktöre bağlıdır. Toplumsal refahın artırılmasında vazgeçilmez bir etken olan enerjinin giderek önem kazandığı günümüzde binalardaki enerji tüketiminin azaltılması, hem çevresel sürdürülebilirlik hem de ekonomik açıdan önemlidir. Bu çalışmada denetimli makine öğrenmesi algoritmalarından doğrusal regresyon ve k en yakın komşu algoritmaları kullanılarak bir regresyon problemi olan binalarda enerji verimliliği tahmini yapacak bir model geliştirilmiştir. Deneysel çalışmalar, 12 faklı binadan elde edilen sekiz adet şart özelliğe ve ısıtma yükü ve soğutma yükü olmak üzere iki sınıf değerine sahip toplamda 768 adet veri barındıran enerji verimliği veri kümesi kullanılarak gerçekleştirilmiştir. Çalışmada k en yakın komşu algoritmasının k parametre değeri optimize edilerek performansı arttırılmıştır. Elde edilen deneysel sonuçlara göre k en yakın komşu algoritması doğrusal regresyon algoritmasına göre çok daha başarılı ve %96’lar seviyesinde tahminler gerçekleştirmiştir. Çalışma sonunda elde edilen denetimli makine öğrenmesi modeli ile binaların enerji analizleri kolaylıkla yapılabilecek ve elde edilen analiz sonuçları enerji verimliliğinin arttırılabilmesi için geliştirilecek politikalarda kullanılabilecektir.
建筑物的供暖和制冷负荷是指将建筑物内的空气温度保持在一定温度所需的能量。这些负荷取决于许多因素,如建筑物的隔热、大小、形状、位置、所用材料和供热系统。能源是提高社会福利不可或缺的因素,在当今世界,能源的重要性与日俱增,因此减少建筑物的能源消耗对环境可持续性和经济方面都非常重要。本研究利用线性回归和有监督机器学习算法中的 k 近邻算法开发了一个预测建筑能效的模型,这是一个回归问题。实验研究使用了一个能效数据集,该数据集包含从 12 栋不同建筑中获取的共 768 个数据,其中有 8 个条件特征和两个类别值,即供热负荷和制冷负荷。研究中,通过优化 k 参数值提高了 k 近邻算法的性能。实验结果表明,k 近邻算法比线性回归算法成功得多,预测率高达 96%。利用研究结束时获得的监督机器学习模型,可以很容易地对建筑物进行能源分析,获得的分析结果可用于制定提高能源效率的政策。