Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2023-12-28 DOI:10.11113/matematika.v39.n3.1478
Reza Rezaiy, A. Shabri
{"title":"Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index","authors":"Reza Rezaiy, A. Shabri","doi":"10.11113/matematika.v39.n3.1478","DOIUrl":null,"url":null,"abstract":"Forecasting drought plays a vital role in strategic planning and the management of underground water supply. In this study, we utilized autoregressive integrated moving average (ARIMA) and Seasonal ARIMA (SARIMA) models to predict drought events in Afghanistan, based on the standardized precipitation index (SPI). We used monthly average precipitation data from 1991 to 2015 for model training, while data from 2016 to 2020 were employed for model validation. The results of the statistical analysis, which  encompassed evaluating Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE), indicated that among the SPI 3, SPI 6, SPI 9, SPI 12, and SPI 24, the SARIMA models applied to the SPI 24 demonstrated the most accurate forecasting performance with RMSE (0.1492), MAE (0.1039), and MAPE (22.3732%) compared to SPI 3, SPI 6, SPI 9, and SPI 12. Subsequently, the ARIMA/SARIMA models were employed to forecast drought events for the upcoming year. It’s noteworthy that this constitutes the first-ever statistical analysis of the drought index in Afghanistan. Therefore, the outcomes of this study can be applied across diverse sectors, including water resource management and environmental precautions.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":"50 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/matematika.v39.n3.1478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting drought plays a vital role in strategic planning and the management of underground water supply. In this study, we utilized autoregressive integrated moving average (ARIMA) and Seasonal ARIMA (SARIMA) models to predict drought events in Afghanistan, based on the standardized precipitation index (SPI). We used monthly average precipitation data from 1991 to 2015 for model training, while data from 2016 to 2020 were employed for model validation. The results of the statistical analysis, which  encompassed evaluating Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE), indicated that among the SPI 3, SPI 6, SPI 9, SPI 12, and SPI 24, the SARIMA models applied to the SPI 24 demonstrated the most accurate forecasting performance with RMSE (0.1492), MAE (0.1039), and MAPE (22.3732%) compared to SPI 3, SPI 6, SPI 9, and SPI 12. Subsequently, the ARIMA/SARIMA models were employed to forecast drought events for the upcoming year. It’s noteworthy that this constitutes the first-ever statistical analysis of the drought index in Afghanistan. Therefore, the outcomes of this study can be applied across diverse sectors, including water resource management and environmental precautions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于标准化降水指数的 ARIMA/SARIMA 模型进行阿富汗干旱预测
干旱预测在战略规划和地下水供应管理中起着至关重要的作用。在本研究中,我们利用自回归综合移动平均(ARIMA)和季节 ARIMA(SARIMA)模型,基于标准化降水指数(SPI)预测阿富汗的干旱事件。我们使用 1991 年至 2015 年的月平均降水量数据进行模型训练,并使用 2016 年至 2020 年的数据进行模型验证。统计分析包括评估平均绝对误差 (MAE)、均方根误差 (RMSE) 和平均绝对百分比误差 (MAPE),结果表明,在 SPI 3、SPI 6、SPI 9、SPI 12 和 SPI 24 中,应用于 SPI 24 的 SARIMA 模型表现出最准确的预报性能,RMSE(0.1492)、MAE(0.1039)和 MAPE(22.3732%)。随后,采用 ARIMA/SARIMA 模型预测来年的干旱事件。值得注意的是,这是首次对阿富汗的干旱指数进行统计分析。因此,这项研究的成果可应用于各个领域,包括水资源管理和环境预防。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1