GHz surface-wave phononic crystal biosensor using a Fano resonance at the bandgap edge

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, APPLIED Japanese Journal of Applied Physics Pub Date : 2023-12-28 DOI:10.35848/1347-4065/ad193a
Wenlou Yuan, A. Nagakubo, Oliver Wright, H. Ogi
{"title":"GHz surface-wave phononic crystal biosensor using a Fano resonance at the bandgap edge","authors":"Wenlou Yuan, A. Nagakubo, Oliver Wright, H. Ogi","doi":"10.35848/1347-4065/ad193a","DOIUrl":null,"url":null,"abstract":"We propose an ultrahigh-sensitivity biosensor based on a GHz surface-acoustic-wave nanopillar phononic crystal using a Fano resonance at the bandgap edge. By means of numerical simulations, we find that the asymmetric, sharp and controllable transmission dip at the bandgap edge of the phononic crystal arising from the Fano resonance, which is caused by mode coupling between a local nanopillar resonance and the surface acoustic waves, allows ultrasensitive detection of attached biomolecules. The effect of such mass loading is studied, showing an attogram detection limit, and a unique “on-off” triggering at the sub-femtogram level for each individual Au nanopillar. This study opens up frontiers for biosensing applications of phononic crystals and ultrahigh-frequency surface acoustic wave devices.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"242 6‐7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad193a","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an ultrahigh-sensitivity biosensor based on a GHz surface-acoustic-wave nanopillar phononic crystal using a Fano resonance at the bandgap edge. By means of numerical simulations, we find that the asymmetric, sharp and controllable transmission dip at the bandgap edge of the phononic crystal arising from the Fano resonance, which is caused by mode coupling between a local nanopillar resonance and the surface acoustic waves, allows ultrasensitive detection of attached biomolecules. The effect of such mass loading is studied, showing an attogram detection limit, and a unique “on-off” triggering at the sub-femtogram level for each individual Au nanopillar. This study opens up frontiers for biosensing applications of phononic crystals and ultrahigh-frequency surface acoustic wave devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用带隙边缘法诺共振的 GHz 表面波声子晶体生物传感器
我们提出了一种基于 GHz 表面声波纳米柱声波晶体的超高灵敏度生物传感器,它利用了带隙边缘的法诺共振。通过数值模拟,我们发现由局部纳米柱共振和表面声波之间的模式耦合引起的法诺共振在声波晶体带隙边缘产生的非对称、尖锐和可控的透射凹陷可以对附着的生物分子进行超灵敏检测。对这种质量负载的影响进行了研究,结果表明检测极限为阿托克,每个金纳米柱的 "开-关 "触发都在亚微克级。这项研究为声波晶体和超高频表面声波器件的生物传感应用开辟了前沿领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Japanese Journal of Applied Physics
Japanese Journal of Applied Physics 物理-物理:应用
CiteScore
3.00
自引率
26.70%
发文量
818
审稿时长
3.5 months
期刊介绍: The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP). JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields: • Semiconductors, dielectrics, and organic materials • Photonics, quantum electronics, optics, and spectroscopy • Spintronics, superconductivity, and strongly correlated materials • Device physics including quantum information processing • Physics-based circuits and systems • Nanoscale science and technology • Crystal growth, surfaces, interfaces, thin films, and bulk materials • Plasmas, applied atomic and molecular physics, and applied nuclear physics • Device processing, fabrication and measurement technologies, and instrumentation • Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS
期刊最新文献
Thick piezoelectric films by aerosol deposition at room temperature: corona poling and force sensing Research on optical properties of Eu3+ doped bismuth silicate crystals based on first principles Effect of gas injection pattern on magnetically expanding rf plasma source Rotary pump using underwater electrical discharge Formation conditions of the tungsten porous thin film with pulsed laser deposition under various gas atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1