{"title":"Exploring methodologies in Cannabis tissue-culture and genetic transformation: Opportunities and obstacles","authors":"D. Shukla","doi":"10.62029/jmaps.v45i1.shukla","DOIUrl":null,"url":null,"abstract":"In recent years, the growing interest in Cannabis sativa L., particularly its medicinal and aromatic properties, has propelled advancements in its tissue culture and genetic transformation techniques. This review delineates the significant strides and persistent challenges in the field, offering a comprehensive overview of the current methodologies and their implications. It discusses the synergistic effects of Thidiazuron (TDZ) and Naphthaleneacetic acid (NAA) in the Murashige and Skoog (MS) medium as well as the use of meta-topolin (mT). This synthetic cytokinin (mT) facilitates a high induction frequency and many shoots per explant. It introduces a time-efficient and resource-optimized pathway for Cannabis micropropagation and germplasm conservation. The genetic transformation in Cannabis was predominantly facilitated through Agrobacterium mediated transformation, a cornerstone technique that enabled the integration of foreign genes into the plant genome. Regulatory implications associated with gene editing in Cannabis sativa are highlighted. Despite these advancements, the field grapples with several challenges, including the recalcitrant nature of Cannabis, especially regarding in vitro propagation or genetic transformation, the genotypic specificity of regeneration protocols, and the reproducibility of existing methods. The complexity of the Cannabis genome, characterized by a high degree of polymorphism and multiple copies of specific genes, further exacerbates these challenges. Moreover, the current research landscape is marred by a lack of standardized protocols and variable responses among different Cannabis varieties, necessitating more robust and universally applicable protocols. This review underscores the pressing need for further research to optimize protocols for higher efficiency and to develop suitable systems for in-vitro plantlet regeneration. Cannabis sativa, Genetic transformation, Hemp, Regeneration, Tissue culture","PeriodicalId":507674,"journal":{"name":"Journal of Medicinal and Aromatic Plant Sciences","volume":"71 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal and Aromatic Plant Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62029/jmaps.v45i1.shukla","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the growing interest in Cannabis sativa L., particularly its medicinal and aromatic properties, has propelled advancements in its tissue culture and genetic transformation techniques. This review delineates the significant strides and persistent challenges in the field, offering a comprehensive overview of the current methodologies and their implications. It discusses the synergistic effects of Thidiazuron (TDZ) and Naphthaleneacetic acid (NAA) in the Murashige and Skoog (MS) medium as well as the use of meta-topolin (mT). This synthetic cytokinin (mT) facilitates a high induction frequency and many shoots per explant. It introduces a time-efficient and resource-optimized pathway for Cannabis micropropagation and germplasm conservation. The genetic transformation in Cannabis was predominantly facilitated through Agrobacterium mediated transformation, a cornerstone technique that enabled the integration of foreign genes into the plant genome. Regulatory implications associated with gene editing in Cannabis sativa are highlighted. Despite these advancements, the field grapples with several challenges, including the recalcitrant nature of Cannabis, especially regarding in vitro propagation or genetic transformation, the genotypic specificity of regeneration protocols, and the reproducibility of existing methods. The complexity of the Cannabis genome, characterized by a high degree of polymorphism and multiple copies of specific genes, further exacerbates these challenges. Moreover, the current research landscape is marred by a lack of standardized protocols and variable responses among different Cannabis varieties, necessitating more robust and universally applicable protocols. This review underscores the pressing need for further research to optimize protocols for higher efficiency and to develop suitable systems for in-vitro plantlet regeneration. Cannabis sativa, Genetic transformation, Hemp, Regeneration, Tissue culture