Oleksii Tretiak, Serhii Serhiienko, Anton Zhukov, P. Gakal, Yevhen Don, Mariia Arefieva, I. Tretiak, Stanislav Kravchenko, Oleg Bohozhavets
{"title":"Peculiarities of the Design of Housing Parts of Large Direct Current Machines","authors":"Oleksii Tretiak, Serhii Serhiienko, Anton Zhukov, P. Gakal, Yevhen Don, Mariia Arefieva, I. Tretiak, Stanislav Kravchenko, Oleg Bohozhavets","doi":"10.4271/05-17-01-0005","DOIUrl":null,"url":null,"abstract":"In the given work the design and stress–strain calculation of housing parts of large machines during operation are considered. At the same time, both classical electromagnetic forces and technological operations necessary for mechanical processing and assembly of such objects as well as transportation processes are taken into account for the first time. The task of analyzing of the stress–strain state of the framework was solved in the three-dimensional setting using the finite element method by the SolidWorks software complex. The three-dimensional analysis of the stress–strain state of the structure for technological operations, namely tilting, lifting, and moving the large DC machines frame without poles and with poles, showed that the values of mechanical stresses that arise in the connections of the frame exceed the permissible limits, resulting in significant deformation of the structure. The work proposed the modernized frame design with additional stiffeners and re-calculated the stress–strain state of the unit. The analysis, that was carried out, showed that when performing technological operations, the mechanical stresses that arise do not exceed the permissible ones, and all deformations are in the elastic zone for the given metal.","PeriodicalId":45859,"journal":{"name":"SAE International Journal of Materials and Manufacturing","volume":"95 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Materials and Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/05-17-01-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the given work the design and stress–strain calculation of housing parts of large machines during operation are considered. At the same time, both classical electromagnetic forces and technological operations necessary for mechanical processing and assembly of such objects as well as transportation processes are taken into account for the first time. The task of analyzing of the stress–strain state of the framework was solved in the three-dimensional setting using the finite element method by the SolidWorks software complex. The three-dimensional analysis of the stress–strain state of the structure for technological operations, namely tilting, lifting, and moving the large DC machines frame without poles and with poles, showed that the values of mechanical stresses that arise in the connections of the frame exceed the permissible limits, resulting in significant deformation of the structure. The work proposed the modernized frame design with additional stiffeners and re-calculated the stress–strain state of the unit. The analysis, that was carried out, showed that when performing technological operations, the mechanical stresses that arise do not exceed the permissible ones, and all deformations are in the elastic zone for the given metal.