USTHB at NADI 2023 shared task: Exploring Preprocessing and Feature Engineering Strategies for Arabic Dialect Identification

Mohamed Lichouri, Khaled Lounnas, Aicha Zitouni, H. Latrache, R. Djeradi
{"title":"USTHB at NADI 2023 shared task: Exploring Preprocessing and Feature Engineering Strategies for Arabic Dialect Identification","authors":"Mohamed Lichouri, Khaled Lounnas, Aicha Zitouni, H. Latrache, R. Djeradi","doi":"10.18653/v1/2023.arabicnlp-1.69","DOIUrl":null,"url":null,"abstract":"In this paper, we conduct an in-depth analysis of several key factors influencing the performance of Arabic Dialect Identification NADI’2023, with a specific focus on the first subtask involving country-level dialect identification. Our investigation encompasses the effects of surface preprocessing, morphological preprocessing, FastText vector model, and the weighted concatenation of TF-IDF features. For classification purposes, we employ the Linear Support Vector Classification (LSVC) model. During the evaluation phase, our system demonstrates noteworthy results, achieving an F_1 score of 62.51%. This achievement closely aligns with the average F_1 scores attained by other systems submitted for the first subtask, which stands at 72.91%.","PeriodicalId":503921,"journal":{"name":"ARABICNLP","volume":"227 2","pages":"647-651"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARABICNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.arabicnlp-1.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we conduct an in-depth analysis of several key factors influencing the performance of Arabic Dialect Identification NADI’2023, with a specific focus on the first subtask involving country-level dialect identification. Our investigation encompasses the effects of surface preprocessing, morphological preprocessing, FastText vector model, and the weighted concatenation of TF-IDF features. For classification purposes, we employ the Linear Support Vector Classification (LSVC) model. During the evaluation phase, our system demonstrates noteworthy results, achieving an F_1 score of 62.51%. This achievement closely aligns with the average F_1 scores attained by other systems submitted for the first subtask, which stands at 72.91%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人与生物圈计划在 NADI 2023 上的共同任务:探索阿拉伯语方言识别的预处理和特征工程策略
在本文中,我们对影响阿拉伯语方言识别 NADI'2023 性能的几个关键因素进行了深入分析,重点关注涉及国家级方言识别的第一个子任务。我们的研究涵盖了表面预处理、形态学预处理、FastText 向量模型和 TF-IDF 特征加权串联的影响。在分类方面,我们采用了线性支持向量分类(LSVC)模型。在评估阶段,我们的系统取得了令人瞩目的成绩,F_1 得分为 62.51%。这一成绩与其他系统在第一个子任务中获得的平均 F_1 分数(72.91%)非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TCE at Qur’an QA 2023 Shared Task: Low Resource Enhanced Transformer-based Ensemble Approach for Qur’anic QA USTHB at NADI 2023 shared task: Exploring Preprocessing and Feature Engineering Strategies for Arabic Dialect Identification Beyond English: Evaluating LLMs for Arabic Grammatical Error Correction Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space - Transformer Ensemble Models Tackling Deception and Persuasion Violet: A Vision-Language Model for Arabic Image Captioning with Gemini Decoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1