{"title":"TCE at Qur’an QA 2023 Shared Task: Low Resource Enhanced Transformer-based Ensemble Approach for Qur’anic QA","authors":"Mohammed Elkomy, Amany Sarhan","doi":"10.18653/v1/2023.arabicnlp-1.81","DOIUrl":null,"url":null,"abstract":"In this paper, we present our approach to tackle Qur’an QA 2023 shared tasks A and B. To address the challenge of low-resourced training data, we rely on transfer learning together with a voting ensemble to improve prediction stability across multiple runs. Additionally, we employ different architectures and learning mechanisms for a range of Arabic pre-trained transformer-based models for both tasks. To identify unanswerable questions, we propose using a thresholding mechanism. Our top-performing systems greatly surpass the baseline performance on the hidden split, achieving a MAP score of 25.05% for task A and a partial Average Precision (pAP) of 57.11% for task B.","PeriodicalId":503921,"journal":{"name":"ARABICNLP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARABICNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.arabicnlp-1.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present our approach to tackle Qur’an QA 2023 shared tasks A and B. To address the challenge of low-resourced training data, we rely on transfer learning together with a voting ensemble to improve prediction stability across multiple runs. Additionally, we employ different architectures and learning mechanisms for a range of Arabic pre-trained transformer-based models for both tasks. To identify unanswerable questions, we propose using a thresholding mechanism. Our top-performing systems greatly surpass the baseline performance on the hidden split, achieving a MAP score of 25.05% for task A and a partial Average Precision (pAP) of 57.11% for task B.
在本文中,我们介绍了处理《古兰经》QA 2023 共同任务 A 和 B 的方法。为了应对训练数据资源不足的挑战,我们依靠迁移学习和投票组合来提高多次运行中的预测稳定性。此外,我们还针对这两个任务的一系列基于转换器的阿拉伯语预训练模型采用了不同的架构和学习机制。为了识别无法回答的问题,我们建议使用阈值机制。我们性能最佳的系统在隐藏分词上大大超过了基线性能,在任务 A 中的 MAP 得分为 25.05%,在任务 B 中的部分平均精度 (pAP) 为 57.11%。