DETECTING CROSS-BORDER TRANSACTION PATTERNS USING MACHINE LEARNING: THE CASE OF INDONESIA

Gitarani Prastuti, Indah Permatasari, Lasmin, Ag. Sigit Adi Satmoko, Arman Imran
{"title":"DETECTING CROSS-BORDER TRANSACTION PATTERNS USING MACHINE LEARNING: THE CASE OF INDONESIA","authors":"Gitarani Prastuti, Indah Permatasari, Lasmin, Ag. Sigit Adi Satmoko, Arman Imran","doi":"10.48108/jurnalbppk.v16i1.822","DOIUrl":null,"url":null,"abstract":"We explore the intercompany cross-border trade involving Indonesian entities between 2018 and 2022 to identify to assess the risk of undervaluing in the export/import of goods with machine learning algorithms. Utilizing both micro and macro-level data, this study uncovers unique intercompany cross-border patterns, exposing a higher risk of undervaluing in export/import activities between Indonesian entities and their counterparts overseas. Our findings indicate the following: 1) Foreign investment-based companies are more inclined to engage in cross-border trade compared to domestic-based companies, posing higher risks, 2) Intercompany cross-border trade aligns with the extended gravity model, 3) Certain countries exhibit similar patterns in affiliation transactions, each pattern potentially associated with specific risk profiles and 4) Higher risk is evident in the number of trade transactions with low-tax jurisdictions. These findings offer valuable insights for identifying the potential risk of undervaluing trade. Consequently, this can benefit Customs by using the findings as risk indicators to improve its cross-border management, promote trade fairness, and optimize state revenue.","PeriodicalId":508148,"journal":{"name":"Jurnal BPPK: Badan Pendidikan dan Pelatihan Keuangan","volume":"54 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal BPPK: Badan Pendidikan dan Pelatihan Keuangan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48108/jurnalbppk.v16i1.822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the intercompany cross-border trade involving Indonesian entities between 2018 and 2022 to identify to assess the risk of undervaluing in the export/import of goods with machine learning algorithms. Utilizing both micro and macro-level data, this study uncovers unique intercompany cross-border patterns, exposing a higher risk of undervaluing in export/import activities between Indonesian entities and their counterparts overseas. Our findings indicate the following: 1) Foreign investment-based companies are more inclined to engage in cross-border trade compared to domestic-based companies, posing higher risks, 2) Intercompany cross-border trade aligns with the extended gravity model, 3) Certain countries exhibit similar patterns in affiliation transactions, each pattern potentially associated with specific risk profiles and 4) Higher risk is evident in the number of trade transactions with low-tax jurisdictions. These findings offer valuable insights for identifying the potential risk of undervaluing trade. Consequently, this can benefit Customs by using the findings as risk indicators to improve its cross-border management, promote trade fairness, and optimize state revenue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习检测跨境交易模式:印度尼西亚案例
我们探讨了 2018 年至 2022 年期间涉及印尼实体的公司间跨境贸易,通过机器学习算法识别评估货物进出口中的低估风险。本研究利用微观和宏观层面的数据,发现了独特的公司间跨境模式,揭示了印尼实体与其海外同行之间的进出口活动存在较高的价值低估风险。我们的研究结果表明1)与国内公司相比,以外国投资为基础的公司更倾向于参与跨境贸易,从而带来更高的风险;2)公司间跨境贸易与扩展的引力模型相一致;3)某些国家在关联交易中表现出相似的模式,每种模式都可能与特定的风险特征相关联;4)与低税率司法管辖区的贸易交易数量明显存在更高的风险。这些发现为识别低估贸易的潜在风险提供了宝贵的见解。因此,海关可以利用这些发现作为风险指标,改进跨境管理,促进贸易公平,优化国家税收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DAMPAK PENGELUARAN PEMERINTAH DAN PEMBAYARAN NON-TUNAI SELAMA PANDEMI COVID-19 TERHADAP INFLASI DI INDONESIA ANALISIS PERTUMBUHAN EKONOMI IKLUSIF PADA TINGKAT KABUPATEN/KOTA DI JAWA TIMUR DENGAN INDEKS BIGGI FRAUD DETECTION USING DATA ANALYTICS: A CASE STUDY OF UNDER INVOICING IMPORTATION FRAUD IN INDONESIA DETECTING CROSS-BORDER TRANSACTION PATTERNS USING MACHINE LEARNING: THE CASE OF INDONESIA HOW DOES DIGITALIZATION CHANGE THE ROLE OF CUSTOMS AUTHORITIES AND THE IMPLEMENTATION OF THEIR FISCAL FUNCTION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1