Göz Özelliklerinin LSTM-PSO Modeli kullanılarak Otizm Sınıflandırılması

Dilber Çetintas, T. Tuncer
{"title":"Göz Özelliklerinin LSTM-PSO Modeli kullanılarak Otizm Sınıflandırılması","authors":"Dilber Çetintas, T. Tuncer","doi":"10.24012/dumf.1327654","DOIUrl":null,"url":null,"abstract":"Otizm birçok biyobelirteci olan karmaşık bir rahatsızlıktır. Bu karmaşık rahatsızlığı tanımlamak ve ayırtedebilmek birden fazla biyolojik özelliği kullanarak mümkün olabilmektedir. Bu özelliklerden biri de göz hareketleridir. Çalışma kullanıcılara özgü gözbebeği boyutu, göz pozisyonları(X-Y koordinatları), ilgi alanının noktaları, iris yarıçapı parametrelerinden oluşan dizileri kullanarak otizm spektrum bozukluğu olan (OSB) ve otizm spektrum bozukluğu olmayan (TS) bireyleri LSTM ağı ile otomatik olarak sınıflandırmayı amaçlamaktadır. Bu doğrultuda ilk adım olarak herbir hareketin tüm parametreleri ayrı bir dizi olarak alınır. Alınan diziler ikinci basamakta LSTM ağında işlenir. İşleme aşamasında pencere boyutunun doğru şeçilmesi sonucu etkileyen en önemli faktörlerden biridir. Bu doğrultuda modelde pencere boyutunun optimum seçilebilmesi için PSO (Parçacık Sürü Optimizasyonu) algoritması kullanılır. LSTM-PSO hibrit modeli kullanılarak iki senaryo gerçekleştirilir. Bu senaryolardan biri tüm özellikleri içerirken senaryo 2’de sadece gözbebeği boyutu ve ilgi alanı özellikleri mevcuttur ve DVM (Destek Vektör Makinesi) sınıflandırıcısı ile başarı oranı senaryo 2’de %98,64 maximum olarak ölçülür. Sonuç göz izleme verileri kullanılarak otizmin LSTM ile sınıflandırılmasının mümkün olduğunu ve bu yöntemin otizm tanısı ve tedavisi için potansiyel olarak faydalı olabileceğini göstermektedir.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"56 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1327654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Otizm birçok biyobelirteci olan karmaşık bir rahatsızlıktır. Bu karmaşık rahatsızlığı tanımlamak ve ayırtedebilmek birden fazla biyolojik özelliği kullanarak mümkün olabilmektedir. Bu özelliklerden biri de göz hareketleridir. Çalışma kullanıcılara özgü gözbebeği boyutu, göz pozisyonları(X-Y koordinatları), ilgi alanının noktaları, iris yarıçapı parametrelerinden oluşan dizileri kullanarak otizm spektrum bozukluğu olan (OSB) ve otizm spektrum bozukluğu olmayan (TS) bireyleri LSTM ağı ile otomatik olarak sınıflandırmayı amaçlamaktadır. Bu doğrultuda ilk adım olarak herbir hareketin tüm parametreleri ayrı bir dizi olarak alınır. Alınan diziler ikinci basamakta LSTM ağında işlenir. İşleme aşamasında pencere boyutunun doğru şeçilmesi sonucu etkileyen en önemli faktörlerden biridir. Bu doğrultuda modelde pencere boyutunun optimum seçilebilmesi için PSO (Parçacık Sürü Optimizasyonu) algoritması kullanılır. LSTM-PSO hibrit modeli kullanılarak iki senaryo gerçekleştirilir. Bu senaryolardan biri tüm özellikleri içerirken senaryo 2’de sadece gözbebeği boyutu ve ilgi alanı özellikleri mevcuttur ve DVM (Destek Vektör Makinesi) sınıflandırıcısı ile başarı oranı senaryo 2’de %98,64 maximum olarak ölçülür. Sonuç göz izleme verileri kullanılarak otizmin LSTM ile sınıflandırılmasının mümkün olduğunu ve bu yöntemin otizm tanısı ve tedavisi için potansiyel olarak faydalı olabileceğini göstermektedir.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用眼部特征的 LSTM-PSO 模型进行自闭症分类
自闭症是一种复杂的疾病,有许多生物标志物。我们可以通过多种生物特征来识别和区分这种复杂的疾病。眼球运动就是这些特征之一。本研究旨在通过 LSTM 网络,利用瞳孔大小、眼球位置(X-Y 坐标)、兴趣点、虹膜半径参数等用户特定序列,自动对自闭症谱系障碍(ASD)患者和非自闭症谱系障碍(ASD)患者进行分类。为此,第一步是将每个动作的所有参数作为一个单独的数组。第二步,在 LSTM 网络中处理接收到的序列。在处理阶段,选择正确的窗口大小是影响结果的最重要因素之一。为此,PSO(粒子群优化)算法被用于选择模型中的最佳窗口大小。使用 LSTM-PSO 混合模型实现了两种情况。其中一个场景包括所有特征,而在场景 2 中,只有瞳孔大小和感兴趣区域特征可用,在场景 2 中,使用 SVM(支持向量机)分类器测量的成功率最高为 98.64%。结果表明,利用眼动跟踪数据使用 LSTM 对自闭症进行分类是可行的,而且这种方法对自闭症的诊断和治疗有潜在的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1