{"title":"Metrics for Assessing Generalization of Deep Reinforcement Learning in Parameterized Environments","authors":"Maciej Aleksandrowicz, Joanna Jaworek-Korjakowska","doi":"10.2478/jaiscr-2024-0003","DOIUrl":null,"url":null,"abstract":"Abstract In this work, a study focusing on proposing generalization metrics for Deep Reinforcement Learning (DRL) algorithms was performed. The experiments were conducted in DeepMind Control (DMC) benchmark suite with parameterized environments. The performance of three DRL algorithms in selected ten tasks from the DMC suite has been analysed with existing generalization gap formalism and the proposed ratio and decibel metrics. The results were presented with the proposed methods: average transfer metric and plot for environment normal distribution. These efforts allowed to highlight major changes in the model’s performance and add more insights about making decisions regarding models’ requirements.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"76 ","pages":"45 - 61"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2024-0003","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this work, a study focusing on proposing generalization metrics for Deep Reinforcement Learning (DRL) algorithms was performed. The experiments were conducted in DeepMind Control (DMC) benchmark suite with parameterized environments. The performance of three DRL algorithms in selected ten tasks from the DMC suite has been analysed with existing generalization gap formalism and the proposed ratio and decibel metrics. The results were presented with the proposed methods: average transfer metric and plot for environment normal distribution. These efforts allowed to highlight major changes in the model’s performance and add more insights about making decisions regarding models’ requirements.
期刊介绍:
Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.