Whey Protein-Pectin Conjugate by Wet-Dry Heating: Optimization using Response Surface Methodology with Box-Behnken Design

IF 0.2 Q4 AGRONOMY agriTECH Pub Date : 2023-11-30 DOI:10.22146/agritech.71301
A. D. Setiowati, Elita Yeliani, Chusnul Hidayat
{"title":"Whey Protein-Pectin Conjugate by Wet-Dry Heating: Optimization using Response Surface Methodology with Box-Behnken Design","authors":"A. D. Setiowati, Elita Yeliani, Chusnul Hidayat","doi":"10.22146/agritech.71301","DOIUrl":null,"url":null,"abstract":"The recent progress in glycation of proteins utilizing saccharides through the Maillard reaction has garnered substantial attention, with a specific emphasis on Whey Protein Concentrate (WPC). Conjugation mode is frequently intricate and poses challenges when scaling up for large-scale production. Consequently, this investigation sought to optimize the conditions of the WPC-pectin conjugation process using Response Surface Methodology (RSM) in conjunction with Box-Behnken design (BBD). The experimentation was executed employing a cabinet dryer, incorporating both wet and dry heating procedures to yield a WPC-pectin conjugate exhibiting favorable functional properties. The independent variables investigated encompassed pectin concentration (ranging from 0 to 1%), pH (ranging from 6 to 8), and drying time (ranging from 2 to 6 hours), The measured responses encompassed the emulsion stability index (ESI), emulsifying activity index (EAI), and solubility. Analyzing the experimental data underwent scrutiny for model sufficiency through diagnostic plots, and a second-order polynomial equation was fitted through multi-response regression analysis, resulting in a high coefficient of determination (R 2 ) value. The most effective parameters were identified as a pectin concentration of 0.49%, pH 6.7, and a drying duration of 4.12 hours, yielding a peak ESI of 452.267 minutes, EAI measuring 49.95 m 2 g -1 , and solubility reaching 48.09%. Further experiments were conducted to validate these outcomes, and the presence of the Maillard reaction was confirmed using Fourier Transform Infrared Spectrum (FTIR). The et-dry method demonstrated efficacy in producing WPCpectin conjugates with commendable functional properties.","PeriodicalId":7563,"journal":{"name":"agriTECH","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"agriTECH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/agritech.71301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent progress in glycation of proteins utilizing saccharides through the Maillard reaction has garnered substantial attention, with a specific emphasis on Whey Protein Concentrate (WPC). Conjugation mode is frequently intricate and poses challenges when scaling up for large-scale production. Consequently, this investigation sought to optimize the conditions of the WPC-pectin conjugation process using Response Surface Methodology (RSM) in conjunction with Box-Behnken design (BBD). The experimentation was executed employing a cabinet dryer, incorporating both wet and dry heating procedures to yield a WPC-pectin conjugate exhibiting favorable functional properties. The independent variables investigated encompassed pectin concentration (ranging from 0 to 1%), pH (ranging from 6 to 8), and drying time (ranging from 2 to 6 hours), The measured responses encompassed the emulsion stability index (ESI), emulsifying activity index (EAI), and solubility. Analyzing the experimental data underwent scrutiny for model sufficiency through diagnostic plots, and a second-order polynomial equation was fitted through multi-response regression analysis, resulting in a high coefficient of determination (R 2 ) value. The most effective parameters were identified as a pectin concentration of 0.49%, pH 6.7, and a drying duration of 4.12 hours, yielding a peak ESI of 452.267 minutes, EAI measuring 49.95 m 2 g -1 , and solubility reaching 48.09%. Further experiments were conducted to validate these outcomes, and the presence of the Maillard reaction was confirmed using Fourier Transform Infrared Spectrum (FTIR). The et-dry method demonstrated efficacy in producing WPCpectin conjugates with commendable functional properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干湿加热法乳清蛋白-果胶共轭物:利用响应面方法和箱式贝肯设计进行优化
最近,通过马氏反应(Maillard reaction)利用糖类对蛋白质进行糖化的研究进展引起了广泛关注,其中特别强调了浓缩乳清蛋白(WPC)。糖化模式往往错综复杂,给大规模生产带来挑战。因此,本研究试图利用响应面方法学(RSM)结合盒式贝肯设计(BBD)来优化 WPC 与pectin 共轭过程的条件。实验采用柜式干燥机,结合湿法和干法加热程序,以获得具有良好功能特性的木塑-pectin共轭物。研究的自变量包括果胶浓度(0-1%)、pH 值(6-8)和干燥时间(2-6 小时),测量的反应包括乳液稳定性指数(ESI)、乳化活性指数(EAI)和溶解度。通过诊断图对实验数据进行分析,以确保模型的充分性,并通过多反应回归分析拟合了二阶多项式方程,得出了较高的决定系数(R 2)值。最有效的参数被确定为果胶浓度 0.49%、pH 值 6.7 和干燥持续时间 4.12 小时,从而得到峰值 ESI 为 452.267 分钟、EAI 为 49.95 m 2 g -1 和溶解度达到 48.09%。为了验证这些结果,还进行了进一步的实验,并利用傅立叶变换红外光谱(FTIR)确认了 Maillard 反应的存在。等干法在生产具有良好功能特性的 WPCpectin 共轭物方面证明了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
agriTECH
agriTECH AGRONOMY-
自引率
0.00%
发文量
30
审稿时长
24 weeks
期刊最新文献
Characteristics of Bread with The Substitution of Fermented Purple Yam Flour (Dioscorea alata) Characterization of Mixed Rice: Nutritional Value, Physicochemical Properties, Organoleptic, and Glycemic Index Effect of Priming on Brassica rapa subsp. chinensis (Bok Choy) Seeds Germination Effects of Extraction Temperature on Polyphenol Compounds and Antioxidant Activity of Golden Bladderwort (Utricularia aurea) Whey Protein-Pectin Conjugate by Wet-Dry Heating: Optimization using Response Surface Methodology with Box-Behnken Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1