Shailesh Raj Acharya, Swati Shrestha, V. Michael, Yuqing Fu, Prerna Sabharwal, Shallu Thakur, G. Meru
{"title":"Transcriptional Changes during Phytophthora capsici Infection Reveal Potential Defense Mechanisms in Squash","authors":"Shailesh Raj Acharya, Swati Shrestha, V. Michael, Yuqing Fu, Prerna Sabharwal, Shallu Thakur, G. Meru","doi":"10.3390/stresses3040056","DOIUrl":null,"url":null,"abstract":"Phytophthora capsici incites foliar blight, root, fruit, and crown rot in squash (Cucurbita spp.) and limits production worldwide. Resistance to crown rot in C. moschata breeding line #394-1-27-12 is conferred by three dominant genes, but the molecular mechanisms underlying this resistance are poorly understood. In the current study, RNA sequencing was used to investigate transcriptional changes in #394-1-27-12 (resistant) and Butterbush (susceptible) following infection by P. capsici at 12, 24, 48, 72, and 120 h post inoculation (hpi). Overall, the number of differentially expressed genes (DEGs) in Butterbush (2648) exceeded those in #394-1-27-12 (1729), but in both genotypes, the highest number of DEGs was observed at 72 hpi and least at 24 hpi. Our gene ontology (GO) analysis revealed a downregulation of the genes involved in polysaccharide and lignin metabolism in Butterbush but as an upregulation of those associated with regulation of peptidase activity. However, in #394-1-27-12, the downregulated genes were primarily associated with response to stimuli, whereas those upregulated were involved in oxidation–reduction and response to stress. The upregulated genes in #394-1-27-12 included defensin-like proteins, respiratory-burst oxidases, ethylene-responsive transcription factors, cytochrome P450 proteins, and peroxidases. These findings provide a framework for the functional validation of the molecular mechanisms underlying resistance to P. capsici in cucurbits.","PeriodicalId":508968,"journal":{"name":"Stresses","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stresses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stresses3040056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Phytophthora capsici incites foliar blight, root, fruit, and crown rot in squash (Cucurbita spp.) and limits production worldwide. Resistance to crown rot in C. moschata breeding line #394-1-27-12 is conferred by three dominant genes, but the molecular mechanisms underlying this resistance are poorly understood. In the current study, RNA sequencing was used to investigate transcriptional changes in #394-1-27-12 (resistant) and Butterbush (susceptible) following infection by P. capsici at 12, 24, 48, 72, and 120 h post inoculation (hpi). Overall, the number of differentially expressed genes (DEGs) in Butterbush (2648) exceeded those in #394-1-27-12 (1729), but in both genotypes, the highest number of DEGs was observed at 72 hpi and least at 24 hpi. Our gene ontology (GO) analysis revealed a downregulation of the genes involved in polysaccharide and lignin metabolism in Butterbush but as an upregulation of those associated with regulation of peptidase activity. However, in #394-1-27-12, the downregulated genes were primarily associated with response to stimuli, whereas those upregulated were involved in oxidation–reduction and response to stress. The upregulated genes in #394-1-27-12 included defensin-like proteins, respiratory-burst oxidases, ethylene-responsive transcription factors, cytochrome P450 proteins, and peroxidases. These findings provide a framework for the functional validation of the molecular mechanisms underlying resistance to P. capsici in cucurbits.