Dissipative Cyclic Reaction Networks: Mechanistic Insights into a Minor Enantiomer Recycling Process

IF 3.1 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemSystemsChem Pub Date : 2023-11-27 DOI:10.1002/syst.202300045
Dr. Cristiana Margarita, Dr. Anna Laurell Nash, David A. Ahlstrand, Prof. Dr. Mårten S. G. Ahlquist, Prof. Dr. Ola F. Wendt, Dr. Linda Fransson, Prof. Dr. Christina Moberg
{"title":"Dissipative Cyclic Reaction Networks: Mechanistic Insights into a Minor Enantiomer Recycling Process","authors":"Dr. Cristiana Margarita,&nbsp;Dr. Anna Laurell Nash,&nbsp;David A. Ahlstrand,&nbsp;Prof. Dr. Mårten S. G. Ahlquist,&nbsp;Prof. Dr. Ola F. Wendt,&nbsp;Dr. Linda Fransson,&nbsp;Prof. Dr. Christina Moberg","doi":"10.1002/syst.202300045","DOIUrl":null,"url":null,"abstract":"<p>An analysis of an out-of-equilibrium cyclic reaction network which continuously converts a minor undesired product enantiomer to the desired major enantiomer by irreversible addition of chemical fuel and irreversible elimination of spent fuel is presented. The reaction network is maintained as long as fuel is added; interrupted fuel addition drives the system towards equilibrium, but the cyclic process restarts upon resumed fuel addition, as demonstrated by three consecutive fuel cycles. The process is powered by the hydrolysis of methyl cyanoformate to HCN and monomethyl carbonic acid, which decomposes to CO<sub>2</sub> and MeOH. The time it takes to reach steady state depends on the rate of conversion of the fuel and decreases with increased conversion rate. Three catalysts, one metal catalyst and two enzymes, together constitute an efficient regulation system allowing control of the forward, backward and waste-forming steps, thereby assuring the production of high yields of products with high enantiopurity.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"6 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202300045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202300045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An analysis of an out-of-equilibrium cyclic reaction network which continuously converts a minor undesired product enantiomer to the desired major enantiomer by irreversible addition of chemical fuel and irreversible elimination of spent fuel is presented. The reaction network is maintained as long as fuel is added; interrupted fuel addition drives the system towards equilibrium, but the cyclic process restarts upon resumed fuel addition, as demonstrated by three consecutive fuel cycles. The process is powered by the hydrolysis of methyl cyanoformate to HCN and monomethyl carbonic acid, which decomposes to CO2 and MeOH. The time it takes to reach steady state depends on the rate of conversion of the fuel and decreases with increased conversion rate. Three catalysts, one metal catalyst and two enzymes, together constitute an efficient regulation system allowing control of the forward, backward and waste-forming steps, thereby assuring the production of high yields of products with high enantiopurity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
耗散循环反应网络:小对映体回收过程的机理启示
本文分析了一个失去平衡的循环反应网络,该网络通过不可逆地添加化学燃料和不可逆地消除乏燃料,不断地将次要的不想要的产品对映体转化为所需的主要对映体。只要添加燃料,反应网络就会保持不变;中断添加燃料会使系统趋于平衡,但循环过程会在重新添加燃料后重新启动,连续三次燃料循环证明了这一点。该过程的动力来自氰基甲酸甲酯水解成 HCN 和碳酸一甲酯,碳酸一甲酯分解成 CO2 和 MeOH。达到稳定状态所需的时间取决于燃料的转化率,并随着转化率的增加而减少。三种催化剂、一种金属催化剂和两种酶共同构成了一个高效的调节系统,可以控制前向、后向和废物形成步骤,从而确保生产出高产率和高对映纯度的产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
期刊最新文献
Front Cover: Photostimuli Reach a Selective Intermediate in a Microflow: One-Shot Transformation from a Supramolecular Co-Polymer to a Micro-Disk Structure (ChemSystemsChem 6/2024) Empowering Chemical AI Through Systems Chemistry Front Cover: Effect of Temperature on Calcium-Based Chemical Garden Growth (ChemSystemsChem 5/2024) Oscillations of the Local pH Reverses Silver Micromotors in H2O2 Transport-Limited Growth of Flow-Driven Rare-Earth Silicate Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1