Charge-Mediated Interactions Affect Enzymatic Reactions in Peptide Condensates

IF 3.1 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemSystemsChem Pub Date : 2024-10-04 DOI:10.1002/syst.202400055
Rif Harris, Nofar Berman, Ayala Lampel
{"title":"Charge-Mediated Interactions Affect Enzymatic Reactions in Peptide Condensates","authors":"Rif Harris,&nbsp;Nofar Berman,&nbsp;Ayala Lampel","doi":"10.1002/syst.202400055","DOIUrl":null,"url":null,"abstract":"<p>Biomolecular condensates, formed through liquid-liquid phase separation (LLPS), serve as enzymatic reaction centers in cells by increasing local concentrations of enzymes and substrates, thereby facilitating reaction kinetics and regulatory mechanisms. Inspired by these natural systems, synthetic condensates are being developed for diverse applications, including payload delivery, sensing, and as microreactors where enzymatic reaction kinetics can be modulated by factors like pH, viscosity, and enzyme-substrate co-localization. Here, we investigate how the physicochemical properties of enzymes and substrates influence condensate formation and function as microreactors. Focusing on cellulase and alkaline phosphatase, which differ in molecular weight and isoelectric point, we employed a minimalistic complex coacervation system of oppositely charged LLPS-promoting peptides. Our findings show how electrostatic forces within condensates influence their role as microreactors. Specifically, the ability of condensates to encapsulate or exclude phosphatase, cellulase, and their substrates, which is pivotal for the regulation of reaction kinetics, is determined by the enzyme surface charge, substrate charge, and condensate charge stoichiometry. These results highlight the potential of utilizing electrostatic forces within condensates to modulate enzymatic reactions, providing critical insights for developing synthetic condensates as microreactors in biotechnology and materials science.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"7 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400055","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202400055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomolecular condensates, formed through liquid-liquid phase separation (LLPS), serve as enzymatic reaction centers in cells by increasing local concentrations of enzymes and substrates, thereby facilitating reaction kinetics and regulatory mechanisms. Inspired by these natural systems, synthetic condensates are being developed for diverse applications, including payload delivery, sensing, and as microreactors where enzymatic reaction kinetics can be modulated by factors like pH, viscosity, and enzyme-substrate co-localization. Here, we investigate how the physicochemical properties of enzymes and substrates influence condensate formation and function as microreactors. Focusing on cellulase and alkaline phosphatase, which differ in molecular weight and isoelectric point, we employed a minimalistic complex coacervation system of oppositely charged LLPS-promoting peptides. Our findings show how electrostatic forces within condensates influence their role as microreactors. Specifically, the ability of condensates to encapsulate or exclude phosphatase, cellulase, and their substrates, which is pivotal for the regulation of reaction kinetics, is determined by the enzyme surface charge, substrate charge, and condensate charge stoichiometry. These results highlight the potential of utilizing electrostatic forces within condensates to modulate enzymatic reactions, providing critical insights for developing synthetic condensates as microreactors in biotechnology and materials science.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
期刊最新文献
Front Cover: Nonequilibrium Membrane Dynamics Induced by Active Protein Interactions and Chemical Reactions: A Review (ChemSystemsChem 1/2025) Front Cover: Photostimuli Reach a Selective Intermediate in a Microflow: One-Shot Transformation from a Supramolecular Co-Polymer to a Micro-Disk Structure (ChemSystemsChem 6/2024) Shape Analysis of Biomimetic and Plasma Membrane Vesicles Spatially Coded Transformations in Gradient-Dependent Protocell Morphogenesis Charge-Mediated Interactions Affect Enzymatic Reactions in Peptide Condensates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1