Eero J. Pätäri, Sheraz Ahmed, Tuomas Lankinen, J. Yeomans
{"title":"Combining low-volatility and mean-reversion anomalies: Better together?","authors":"Eero J. Pätäri, Sheraz Ahmed, Tuomas Lankinen, J. Yeomans","doi":"10.3233/af-220441","DOIUrl":null,"url":null,"abstract":"This paper contributes to the existing stock market anomaly literature by being the first to analyze the benefits of combining two distinct anomalies; specifically, the low-volatility and mean-reversion anomalies. Our results show that on a long-only basis, these two time-varying anomalies could be combined into a double-sort investment strategy that includes some desirable characteristics from each of them, thereby making the portfolio return accumulation more stable over time. As the added-value of low-volatility investing stems mostly from the risk-reduction side, while contrarian stocks are generally highly volatile with remarkable upside potential, the use of the double-sort portfolio-formation in which the contrarian stocks are picked from the sub-set of below-median volatility stocks can shorten the below-market performance periods that have occasionally materialized for plain low-volatility or plain contrarian investors.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"12 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/af-220441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper contributes to the existing stock market anomaly literature by being the first to analyze the benefits of combining two distinct anomalies; specifically, the low-volatility and mean-reversion anomalies. Our results show that on a long-only basis, these two time-varying anomalies could be combined into a double-sort investment strategy that includes some desirable characteristics from each of them, thereby making the portfolio return accumulation more stable over time. As the added-value of low-volatility investing stems mostly from the risk-reduction side, while contrarian stocks are generally highly volatile with remarkable upside potential, the use of the double-sort portfolio-formation in which the contrarian stocks are picked from the sub-set of below-median volatility stocks can shorten the below-market performance periods that have occasionally materialized for plain low-volatility or plain contrarian investors.
期刊介绍:
Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.