{"title":"Routing in Multimodal Transportation Networks with Non-scheduled Lines","authors":"Darko Drakulic, Christelle Loiodice, Vassilissa Lehoux","doi":"10.1145/3632969","DOIUrl":null,"url":null,"abstract":"Over the last decades, new mobility offers have emerged to enlarge the coverage and the accessibility of public transportation systems. In many areas, public transit now incorporates on-demand transport lines, that can be activated at user need. In this paper, we propose to integrate lines without predefined schedules but with predefined stop sequences into a state-of-the-art trip planning algorithm for public transit, the Trip-Based Public Transit Routing algorithm [33]. We extend this algorithm to non-scheduled lines and explain how to model other modes of transportation, such as bike sharing, with this approach. The resulting algorithm is exact and optimizes two criteria: the earliest arrival time and the minimal number of transfers. Experiments on two large datasets show the interest of the proposed method over a baseline modelling.","PeriodicalId":374984,"journal":{"name":"ACM Journal of Experimental Algorithmics","volume":"28 1","pages":"1 - 16"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal of Experimental Algorithmics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3632969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Over the last decades, new mobility offers have emerged to enlarge the coverage and the accessibility of public transportation systems. In many areas, public transit now incorporates on-demand transport lines, that can be activated at user need. In this paper, we propose to integrate lines without predefined schedules but with predefined stop sequences into a state-of-the-art trip planning algorithm for public transit, the Trip-Based Public Transit Routing algorithm [33]. We extend this algorithm to non-scheduled lines and explain how to model other modes of transportation, such as bike sharing, with this approach. The resulting algorithm is exact and optimizes two criteria: the earliest arrival time and the minimal number of transfers. Experiments on two large datasets show the interest of the proposed method over a baseline modelling.