Effect of salicylic acid on cowpea seedlings under saline stress

IF 0.7 Q4 PLANT SCIENCES Plant Science Today Pub Date : 2023-11-23 DOI:10.14719/pst.2237
Diana Jhulia Palheta de Sousa, Tamirys Marcelina da Silva, Marcio Augusto Costa Carmona Junior, Glauco André Dos Santos Nogueira, Ana Ecídia De Araújo Brito, Luma Castro de Souza, Cândido Ferreira de Oliveira Neto, Gerson Diego Pamplona Albuquerque
{"title":"Effect of salicylic acid on cowpea seedlings under saline stress","authors":"Diana Jhulia Palheta de Sousa, Tamirys Marcelina da Silva, Marcio Augusto Costa Carmona Junior, Glauco André Dos Santos Nogueira, Ana Ecídia De Araújo Brito, Luma Castro de Souza, Cândido Ferreira de Oliveira Neto, Gerson Diego Pamplona Albuquerque","doi":"10.14719/pst.2237","DOIUrl":null,"url":null,"abstract":"The aim of this work was applying salicylic acid (SA) in cowpea seedlings under saline stress. The experiment took place in the seed laboratory of the Universidade Federal Rural da Amazônia with a completely randomized experimental design in a 2 x 2 x 3 factorial scheme, with two bean cultivars (Canapu and Pingo-de-ouro), two levels of salicylic acid (0, and 0.50 mM) and three salt stress levels (0, 25, 50 mM). The seeds were previously soaked in salicylic acid (0 and 0.50 mM) for a period of 12 hours and then placed in germitest paper rolls for treatments with NaCl (0, 25, 50 mM) for a period of 12 days at room temperature constant 27 °C. There was a significant effect of cultivars, AS dose and NaCl concentrations and their interactions on most of the analyzed variables. Root and leaf proline concentrations were higher in pingo-de-ouro cultivar, Canapu cultivar had better performance in biomass accumulation. Salicylic acid reduced proteins in the leaves by 13.33%, while in the root there was an increase of 12.61%, ammonium concentrations reduced in the roots by 11.9%. When applied to salinity (25 and 50 mM) there was an increase of proteins in the leaves 40.83% and 27.48% respectively, and a reduction of amino acids of 30.24 and 25.24% in NaCl dosages (25 and 50 mM) respectively. Salinity reduced biomass accumulation and interfered with cellular solute production. However, the application of salicylic acid promoted salt stress tolerance in Canapu cultivar.","PeriodicalId":20236,"journal":{"name":"Plant Science Today","volume":"13 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14719/pst.2237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this work was applying salicylic acid (SA) in cowpea seedlings under saline stress. The experiment took place in the seed laboratory of the Universidade Federal Rural da Amazônia with a completely randomized experimental design in a 2 x 2 x 3 factorial scheme, with two bean cultivars (Canapu and Pingo-de-ouro), two levels of salicylic acid (0, and 0.50 mM) and three salt stress levels (0, 25, 50 mM). The seeds were previously soaked in salicylic acid (0 and 0.50 mM) for a period of 12 hours and then placed in germitest paper rolls for treatments with NaCl (0, 25, 50 mM) for a period of 12 days at room temperature constant 27 °C. There was a significant effect of cultivars, AS dose and NaCl concentrations and their interactions on most of the analyzed variables. Root and leaf proline concentrations were higher in pingo-de-ouro cultivar, Canapu cultivar had better performance in biomass accumulation. Salicylic acid reduced proteins in the leaves by 13.33%, while in the root there was an increase of 12.61%, ammonium concentrations reduced in the roots by 11.9%. When applied to salinity (25 and 50 mM) there was an increase of proteins in the leaves 40.83% and 27.48% respectively, and a reduction of amino acids of 30.24 and 25.24% in NaCl dosages (25 and 50 mM) respectively. Salinity reduced biomass accumulation and interfered with cellular solute production. However, the application of salicylic acid promoted salt stress tolerance in Canapu cultivar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水杨酸对盐碱胁迫下豇豆幼苗的影响
这项工作的目的是在盐碱胁迫下对豇豆幼苗施用水杨酸(SA)。实验在亚马孙联邦农村大学的种子实验室进行,采用 2 x 2 x 3 的完全随机实验设计,有两个豆类栽培品种(Canapu 和 Pingo-de-ouro)、两种水平的水杨酸(0 和 0.50 mM)以及三种盐胁迫水平(0、25、50 mM)。种子先在水杨酸(0 和 0.50 毫摩尔)中浸泡 12 小时,然后放入发芽试验纸卷中,在室温恒定 27 °C 下用 NaCl(0、25、50 毫摩尔)处理 12 天。栽培品种、AS 剂量和 NaCl 浓度及其交互作用对大多数分析变量都有显著影响。Pingo-de-ouro 栽培品种的根和叶片脯氨酸浓度较高,Canapu 栽培品种在生物量积累方面表现较好。水杨酸使叶片中的蛋白质减少了 13.33%,而根中的蛋白质增加了 12.61%,根中的铵浓度减少了 11.9%。当施加盐度(25 和 50 毫摩尔)时,叶片中的蛋白质分别增加了 40.83% 和 27.48%,而在 25 毫摩尔和 50 毫摩尔的氯化钠剂量下,氨基酸分别减少了 30.24% 和 25.24%。盐度降低了生物量的积累,并干扰了细胞溶质的产生。然而,施用水杨酸可促进卡纳普栽培品种对盐胁迫的耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Science Today
Plant Science Today PLANT SCIENCES-
CiteScore
1.50
自引率
11.10%
发文量
177
期刊最新文献
Effects of hydrophilic and lipophilic emulsifier concentrations on the characteristics of Germander essential oil nanoemulsions prepared using the nanoprecipitation technique Optimization of a soil type prediction method based on the deep learning model and vegetation characteristics Phytochemicals Analysis and Antioxidant Potential of Hydroalcoholic Extracts of Fresh Fruits of Pistacia atlantica and Pistacia khinjuk Evaluation of zinc application methods and integrated nutrient management on variation in growth, yield and yield contributing factors in wheat Evaluation of the suitability of three weed species as alternative cover crops in smallholder oil palm plantations through plant spacing management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1