Diana Jhulia Palheta de Sousa, Tamirys Marcelina da Silva, Marcio Augusto Costa Carmona Junior, Glauco André Dos Santos Nogueira, Ana Ecídia De Araújo Brito, Luma Castro de Souza, Cândido Ferreira de Oliveira Neto, Gerson Diego Pamplona Albuquerque
{"title":"Effect of salicylic acid on cowpea seedlings under saline stress","authors":"Diana Jhulia Palheta de Sousa, Tamirys Marcelina da Silva, Marcio Augusto Costa Carmona Junior, Glauco André Dos Santos Nogueira, Ana Ecídia De Araújo Brito, Luma Castro de Souza, Cândido Ferreira de Oliveira Neto, Gerson Diego Pamplona Albuquerque","doi":"10.14719/pst.2237","DOIUrl":null,"url":null,"abstract":"The aim of this work was applying salicylic acid (SA) in cowpea seedlings under saline stress. The experiment took place in the seed laboratory of the Universidade Federal Rural da Amazônia with a completely randomized experimental design in a 2 x 2 x 3 factorial scheme, with two bean cultivars (Canapu and Pingo-de-ouro), two levels of salicylic acid (0, and 0.50 mM) and three salt stress levels (0, 25, 50 mM). The seeds were previously soaked in salicylic acid (0 and 0.50 mM) for a period of 12 hours and then placed in germitest paper rolls for treatments with NaCl (0, 25, 50 mM) for a period of 12 days at room temperature constant 27 °C. There was a significant effect of cultivars, AS dose and NaCl concentrations and their interactions on most of the analyzed variables. Root and leaf proline concentrations were higher in pingo-de-ouro cultivar, Canapu cultivar had better performance in biomass accumulation. Salicylic acid reduced proteins in the leaves by 13.33%, while in the root there was an increase of 12.61%, ammonium concentrations reduced in the roots by 11.9%. When applied to salinity (25 and 50 mM) there was an increase of proteins in the leaves 40.83% and 27.48% respectively, and a reduction of amino acids of 30.24 and 25.24% in NaCl dosages (25 and 50 mM) respectively. Salinity reduced biomass accumulation and interfered with cellular solute production. However, the application of salicylic acid promoted salt stress tolerance in Canapu cultivar.","PeriodicalId":20236,"journal":{"name":"Plant Science Today","volume":"13 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14719/pst.2237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this work was applying salicylic acid (SA) in cowpea seedlings under saline stress. The experiment took place in the seed laboratory of the Universidade Federal Rural da Amazônia with a completely randomized experimental design in a 2 x 2 x 3 factorial scheme, with two bean cultivars (Canapu and Pingo-de-ouro), two levels of salicylic acid (0, and 0.50 mM) and three salt stress levels (0, 25, 50 mM). The seeds were previously soaked in salicylic acid (0 and 0.50 mM) for a period of 12 hours and then placed in germitest paper rolls for treatments with NaCl (0, 25, 50 mM) for a period of 12 days at room temperature constant 27 °C. There was a significant effect of cultivars, AS dose and NaCl concentrations and their interactions on most of the analyzed variables. Root and leaf proline concentrations were higher in pingo-de-ouro cultivar, Canapu cultivar had better performance in biomass accumulation. Salicylic acid reduced proteins in the leaves by 13.33%, while in the root there was an increase of 12.61%, ammonium concentrations reduced in the roots by 11.9%. When applied to salinity (25 and 50 mM) there was an increase of proteins in the leaves 40.83% and 27.48% respectively, and a reduction of amino acids of 30.24 and 25.24% in NaCl dosages (25 and 50 mM) respectively. Salinity reduced biomass accumulation and interfered with cellular solute production. However, the application of salicylic acid promoted salt stress tolerance in Canapu cultivar.