Numerical simulation study on the effects of liquid water atomization on the flow field and performance of aluminum-based water ramjet engines

IF 2 Q2 ENGINEERING, MECHANICAL Frontiers in Mechanical Engineering Pub Date : 2023-11-23 DOI:10.3389/fmech.2023.1194217
Yuntian Zhang, Yunkai Wu, Xiwei Cao, Yuanshu Liu, Yongqiang Sun, Jing Yang, Liu Junli
{"title":"Numerical simulation study on the effects of liquid water atomization on the flow field and performance of aluminum-based water ramjet engines","authors":"Yuntian Zhang, Yunkai Wu, Xiwei Cao, Yuanshu Liu, Yongqiang Sun, Jing Yang, Liu Junli","doi":"10.3389/fmech.2023.1194217","DOIUrl":null,"url":null,"abstract":"In order to investigate the effects of different water inlet droplet diameters on the performance of aluminum-based water ramjet engines, the internal flow field of the engine was analyzed through numerical simulation. The results showed that by selecting a suitable water droplet diameter at the water inlet and controlling the time required for water droplet evaporation and heat absorption, the working range of aluminum-water combustion reaction can be expanded and the specific impulse of the engine can be increased. In engine design and practical application, the design of the water injection nozzle upstream of the engine is critical, and the droplet diameter at the water inlet should be controlled within a suitable range. A diameter that is too large will reduce the evaporation efficiency and hinder the further diffusion of combustion reaction. Droplet sizes that are too small will rapidly evaporate, causing the temperature in the flow field to decrease rapidly, leading to a large range of low-temperature regions in the main reaction zone of the combustion chamber, thereby reducing the overall aluminum-water reaction rate of the engine. In addition, the variation of droplet diameter in the downstream water atomization nozzle has little effect on the aluminum-water reaction in the main combustion zone. However, reducing the droplet diameter can facilitate the downstream diffusion of the combustion reaction, further expanding the combustion range and increasing the specific impulse. Furthermore, it can also reduce the temperature near the wall, which is beneficial for reducing the overall thermal protection requirements of the engine.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmech.2023.1194217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to investigate the effects of different water inlet droplet diameters on the performance of aluminum-based water ramjet engines, the internal flow field of the engine was analyzed through numerical simulation. The results showed that by selecting a suitable water droplet diameter at the water inlet and controlling the time required for water droplet evaporation and heat absorption, the working range of aluminum-water combustion reaction can be expanded and the specific impulse of the engine can be increased. In engine design and practical application, the design of the water injection nozzle upstream of the engine is critical, and the droplet diameter at the water inlet should be controlled within a suitable range. A diameter that is too large will reduce the evaporation efficiency and hinder the further diffusion of combustion reaction. Droplet sizes that are too small will rapidly evaporate, causing the temperature in the flow field to decrease rapidly, leading to a large range of low-temperature regions in the main reaction zone of the combustion chamber, thereby reducing the overall aluminum-water reaction rate of the engine. In addition, the variation of droplet diameter in the downstream water atomization nozzle has little effect on the aluminum-water reaction in the main combustion zone. However, reducing the droplet diameter can facilitate the downstream diffusion of the combustion reaction, further expanding the combustion range and increasing the specific impulse. Furthermore, it can also reduce the temperature near the wall, which is beneficial for reducing the overall thermal protection requirements of the engine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液态水雾化对铝基水上冲压喷气发动机流场和性能影响的数值模拟研究
为了研究不同进水口水滴直径对铝基水冲压喷气发动机性能的影响,通过数值模拟分析了发动机的内部流场。结果表明,通过选择合适的进水口水滴直径,控制水滴蒸发吸热所需的时间,可以扩大铝水燃烧反应的工作范围,提高发动机的比冲。在发动机设计和实际应用中,发动机上游喷水口的设计至关重要,进水口的水滴直径应控制在合适的范围内。直径过大会降低蒸发效率,阻碍燃烧反应的进一步扩散。过小的水滴会迅速蒸发,导致流场温度急剧下降,导致燃烧室主反应区出现大范围的低温区,从而降低发动机的整体铝水反应速率。此外,下游水雾化喷嘴中水滴直径的变化对主燃烧区的铝水反应影响不大。但是,减小水滴直径可以促进燃烧反应的下游扩散,进一步扩大燃烧范围,提高比冲。此外,它还能降低靠近壁面的温度,有利于降低发动机的整体热保护要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Mechanical Engineering
Frontiers in Mechanical Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
4.40
自引率
0.00%
发文量
115
审稿时长
14 weeks
期刊最新文献
Finite element analysis and automation of a medium scale grinder applied to the manufacture of cassava starch Editorial: Lightweight mechanical and aerospace structures and materials Analysis of the thickness of layered armor to provide protection against 7.62 mm ball projectiles using experimental and numerical methods Parameter fuzzy rectification for sliding mode control of five-phase permanent magnet synchronous motor speed control system Surrogate-based worst-case analysis of a knee joint model using Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1