{"title":"Effect of Varying the Volume Fractions of Ledeburitic Cementite and Graphite on the Tribological Properties of Commercially Used Cast Irons","authors":"Ł. Frocisz, Piotr Matusiewicz, Janusz Krawczyk","doi":"10.3390/lubricants11120498","DOIUrl":null,"url":null,"abstract":"The types and volume fractions of the carbonaceous phases present in the microstructures of cast irons strongly influence their properties. In the case of materials used commercially for tools, an important parameter with regard to their use is the resistance to abrasion wear. Cementite is the main reinforcing phase in cast irons and is present in significant quantities. In addition, cast irons contain graphite precipitates, which also affect wear by interacting with the matrix of the alloys. In this study, abrasive wear tests were carried out on a group of cast irons with different chemical compositions and, consequently, different microstructural morphologies. Due to the wide scatter of the results and the commercial rather than laboratory nature of the alloys studied, it was decided to use analysis of variance (ANOVA) to determine whether there was a statistically significant difference between the volume fractions of the carbonaceous phases. The volume fractions of graphite and ledeburite were then related to the results of the tribological tests. Statistical analysis confirmed significant differences in the results obtained for the alloys tested. A continuous increase in the volume fractions of both graphite and ledeburitic cementite is unfavourable in terms of the wear resistance and friction coefficient values. Optimum results can be obtained by balancing the volume fractions of the two phases observed. In addition, the phase composition of the material matrix plays an important role in wear, as the differences in the matrix of the tested alloys modify the nature of the influence of cementite and graphite on the wear.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"394 ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120498","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The types and volume fractions of the carbonaceous phases present in the microstructures of cast irons strongly influence their properties. In the case of materials used commercially for tools, an important parameter with regard to their use is the resistance to abrasion wear. Cementite is the main reinforcing phase in cast irons and is present in significant quantities. In addition, cast irons contain graphite precipitates, which also affect wear by interacting with the matrix of the alloys. In this study, abrasive wear tests were carried out on a group of cast irons with different chemical compositions and, consequently, different microstructural morphologies. Due to the wide scatter of the results and the commercial rather than laboratory nature of the alloys studied, it was decided to use analysis of variance (ANOVA) to determine whether there was a statistically significant difference between the volume fractions of the carbonaceous phases. The volume fractions of graphite and ledeburite were then related to the results of the tribological tests. Statistical analysis confirmed significant differences in the results obtained for the alloys tested. A continuous increase in the volume fractions of both graphite and ledeburitic cementite is unfavourable in terms of the wear resistance and friction coefficient values. Optimum results can be obtained by balancing the volume fractions of the two phases observed. In addition, the phase composition of the material matrix plays an important role in wear, as the differences in the matrix of the tested alloys modify the nature of the influence of cementite and graphite on the wear.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding