Is electrostrain > 1% in oxygen deficient Na0.5Bi0.5TiO3 a composition effect?

IF 2.9 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Oxford open materials science Pub Date : 2023-11-22 DOI:10.1093/oxfmat/itad021
Getaw Abebe Tina, Gudeta Jafo Muleta, Gobinda Das Adhikary, Rajeev Ranjan
{"title":"Is electrostrain > 1% in oxygen deficient Na0.5Bi0.5TiO3 a composition effect?","authors":"Getaw Abebe Tina, Gudeta Jafo Muleta, Gobinda Das Adhikary, Rajeev Ranjan","doi":"10.1093/oxfmat/itad021","DOIUrl":null,"url":null,"abstract":"For over two decades Na0.5Bi0.5TiO3 (NBT) -based lead-free piezoelectrics have attracted attention due to its ability to exhibit large electric-field driven strain. Compared to the popular Pb(Zr, Ti)O3 (PZT)-based piezoelectrics, which exhibit electrostrain of about 0.3%, the derivatives of NBT-based lead-free piezoelectrics at the ergodic—non ergodic relaxor crossover exhibit larger electric-field driven strain ∼0.45%. In recent years, there has been a concerted effort to increase the maximum electrostrain in lead-free piezoceramics. Recent reports suggest that oxygen deficient NBT- based piezoceramics can exhibit electrostrain ∼ 1%. In this paper we explore this phenomenon in detail and show that the large electric field driven strain is primarily a consequence of reducing the thickness of the disc dimension below 500 microns.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":"288 ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itad021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For over two decades Na0.5Bi0.5TiO3 (NBT) -based lead-free piezoelectrics have attracted attention due to its ability to exhibit large electric-field driven strain. Compared to the popular Pb(Zr, Ti)O3 (PZT)-based piezoelectrics, which exhibit electrostrain of about 0.3%, the derivatives of NBT-based lead-free piezoelectrics at the ergodic—non ergodic relaxor crossover exhibit larger electric-field driven strain ∼0.45%. In recent years, there has been a concerted effort to increase the maximum electrostrain in lead-free piezoceramics. Recent reports suggest that oxygen deficient NBT- based piezoceramics can exhibit electrostrain ∼ 1%. In this paper we explore this phenomenon in detail and show that the large electric field driven strain is primarily a consequence of reducing the thickness of the disc dimension below 500 microns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在缺氧的 Na0.5Bi0.5TiO3 中,电应变 > 1% 是否是成分的影响?
二十多年来,Na0.5Bi0.5TiO3(NBT)基无铅压电材料因其能够表现出巨大的电场驱动应变而备受关注。与流行的 Pb(Zr, Ti)O3 (PZT) 基压电材料相比(PZT 基压电材料的电应变约为 0.3%),NBT 基无铅压电材料的衍生物在遍历-非遍历弛豫交叉点上表现出更大的电场驱动应变 ∼ 0.45%。近年来,人们一直致力于提高无铅压电陶瓷的最大电应变。最近的报告表明,基于缺氧 NBT 的压电陶瓷可以表现出 1%的电应变。在本文中,我们详细探讨了这一现象,并表明大电场驱动应变主要是将圆盘尺寸厚度减小到 500 微米以下的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Is electrostrain > 1% in oxygen deficient Na0.5Bi0.5TiO3 a composition effect? Bio-based materials for antimicrobial films in food applications: Beyond the COVID-19 pandemic era Lacunarity as a quantitative measure of mixing—a micro-CT analysis-based case study on granular materials Wear behavior of nano-La2O3 dispersed ferritic ODS steel developed by spark plasma sintering Reusable and Thermostable Multiwalled Carbon Nanotubes Membrane for Efficient Removal of Benz[α]Anthracene from Cigarette Smoke
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1