An Efficient Dynamic Programming Algorithm for Finding Group Steiner Trees in Temporal Graphs

Youming Ge, Zitong Chen, Weiyang Kong, Yubao Liu, Raymond Chi-Wing Wong, Sen Zhang
{"title":"An Efficient Dynamic Programming Algorithm for Finding Group Steiner Trees in Temporal Graphs","authors":"Youming Ge, Zitong Chen, Weiyang Kong, Yubao Liu, Raymond Chi-Wing Wong, Sen Zhang","doi":"10.1155/2023/1974161","DOIUrl":null,"url":null,"abstract":"The computation of a group Steiner tree (GST) in various types of graph networks, such as social network and transportation network, is a fundamental graph problem in graphs, with important applications. In these graphs, time is a common and necessary dimension, for example, time information in social network can be the time when a user sends a message to another user. Graphs with time information can be called temporal graphs. However, few studies have been conducted on GST in terms of temporal graphs. This study analyzes the computation of GST for temporal graphs, i.e., the computation of temporal GST (TGST), which is shown to be an NP-hard problem. We propose an efficient solution based on a dynamic programming algorithm for our problem. This study adopts new optimization techniques, including graph simplification, state pruning, and A ∗ search, are adopted to dramatically reduce the algorithm search space. Moreover, we consider three extensions for our problem, namely the TGST with unspecified tree root, the progressive search of TGST, and the top-N search of TGST. Results of the experimental study performed on real temporal networks verify the efficiency and effectiveness of our algorithms.","PeriodicalId":507857,"journal":{"name":"International Journal of Intelligent Systems","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1974161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The computation of a group Steiner tree (GST) in various types of graph networks, such as social network and transportation network, is a fundamental graph problem in graphs, with important applications. In these graphs, time is a common and necessary dimension, for example, time information in social network can be the time when a user sends a message to another user. Graphs with time information can be called temporal graphs. However, few studies have been conducted on GST in terms of temporal graphs. This study analyzes the computation of GST for temporal graphs, i.e., the computation of temporal GST (TGST), which is shown to be an NP-hard problem. We propose an efficient solution based on a dynamic programming algorithm for our problem. This study adopts new optimization techniques, including graph simplification, state pruning, and A ∗ search, are adopted to dramatically reduce the algorithm search space. Moreover, we consider three extensions for our problem, namely the TGST with unspecified tree root, the progressive search of TGST, and the top-N search of TGST. Results of the experimental study performed on real temporal networks verify the efficiency and effectiveness of our algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在时态图中寻找施泰纳树群的高效动态编程算法
在社交网络和交通网络等各类图网络中计算组斯坦纳树(GST)是图中的一个基本图问题,具有重要的应用价值。在这些图中,时间是一个常见且必要的维度,例如,社交网络中的时间信息可以是一个用户向另一个用户发送信息的时间。具有时间信息的图可称为时序图。然而,从时间图的角度对 GST 进行的研究还很少。本研究分析了时态图的 GST 计算,即时态 GST 的计算(TGST),结果表明这是一个 NP 难问题。我们提出了一种基于动态编程算法的高效解决方案。本研究采用了新的优化技术,包括图简化、状态剪枝和 A∗ 搜索,从而大大缩小了算法的搜索空间。此外,我们还考虑了问题的三个扩展,即未指定树根的 TGST、TGST 的渐进搜索和 TGST 的 top-N 搜索。在真实时态网络上进行的实验研究结果验证了我们算法的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Artificial Intelligence-Based Model for Amyotrophic Lateral Sclerosis Prediction Pulmonary Nodule Detection from 3D CT Image with a Two-Stage Network Real-Time Frequency Adaptive Tracking Control of the WPT System Based on Apparent Power Detection Beyond Words: An Intelligent Human-Machine Dialogue System with Multimodal Generation and Emotional Comprehension A New Pareto Discrete NSGAII Algorithm for Disassembly Line Balance Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1