Perbandingan K-Means dan Hierarchical Clustering dalam Pengelompokan Daerah Beresiko Stunting

I. Indra, Nahya Nur, Muhammad Iqram, Nurul Inayah
{"title":"Perbandingan K-Means dan Hierarchical Clustering dalam Pengelompokan Daerah Beresiko Stunting","authors":"I. Indra, Nahya Nur, Muhammad Iqram, Nurul Inayah","doi":"10.35314/isi.v8i2.3612","DOIUrl":null,"url":null,"abstract":"– Currently, Indonesia is one of the countries with a fairly high stunting rate in the world, where the prevalence of stunting is still in the range of 21.6%, while the minimum standard for stunting prevalence set by WHO is 20%. Stunting is a condition of failure to thrive that occurs early in life, usually in children aged 0-5 years. To overcome this problem, the government and related parties have carried out various efforts and intervention programs, one of which is determining priority areas for handling stunting by clustering. In this research, we will cluster stunting areas based on provinces in Indonesia by referring to several parameters, namely the percentage of immunization, proportion of stunting, coverage of exclusive breastfeeding, coverage of vitamins and blood supplement tablets, as well as access to proper sanitation and drinking water. This research will compare clusters formed using Hierarchical Clustering and K Means. The results of the comparison between the K-Means and Hierarchical Clustering methods show that K-Means produces better cluster grouping in terms of the Silhouette Coefficient value of 0.48 and the Calinski-Harabasz index of 10.49 with the number of clusters formed being 2 clusters. In the Hierarchical Clustering Algorithm, the resulting Silhouette Coefficient value is 0.47 and the Calinski-Harabasz index is 9.54. The greater the value of the Silhouette Coefficient and Calinski-Harabasz index, the better the cluster that is formed.","PeriodicalId":354905,"journal":{"name":"INOVTEK Polbeng - Seri Informatika","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INOVTEK Polbeng - Seri Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35314/isi.v8i2.3612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

– Currently, Indonesia is one of the countries with a fairly high stunting rate in the world, where the prevalence of stunting is still in the range of 21.6%, while the minimum standard for stunting prevalence set by WHO is 20%. Stunting is a condition of failure to thrive that occurs early in life, usually in children aged 0-5 years. To overcome this problem, the government and related parties have carried out various efforts and intervention programs, one of which is determining priority areas for handling stunting by clustering. In this research, we will cluster stunting areas based on provinces in Indonesia by referring to several parameters, namely the percentage of immunization, proportion of stunting, coverage of exclusive breastfeeding, coverage of vitamins and blood supplement tablets, as well as access to proper sanitation and drinking water. This research will compare clusters formed using Hierarchical Clustering and K Means. The results of the comparison between the K-Means and Hierarchical Clustering methods show that K-Means produces better cluster grouping in terms of the Silhouette Coefficient value of 0.48 and the Calinski-Harabasz index of 10.49 with the number of clusters formed being 2 clusters. In the Hierarchical Clustering Algorithm, the resulting Silhouette Coefficient value is 0.47 and the Calinski-Harabasz index is 9.54. The greater the value of the Silhouette Coefficient and Calinski-Harabasz index, the better the cluster that is formed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
K-Means 和分层聚类在发育迟缓风险地区聚类中的比较
- 目前,印度尼西亚是世界上发育迟缓率相当高的国家之一,发育迟缓发生率仍在21.6%之间,而世界卫生组织规定的发育迟缓发生率最低标准为20%。发育迟缓是一种在生命早期出现的无法茁壮成长的状况,通常发生在 0-5 岁的儿童身上。为了解决这一问题,政府和有关方面开展了各种工作和干预计划,其中之一就是通过聚类确定优先处理发育迟缓问题的地区。在本研究中,我们将根据印尼各省的情况,参照免疫接种率、发育迟缓比例、纯母乳喂养覆盖率、维生素和补血片覆盖率以及适当的卫生设施和饮用水获取情况等参数,对发育迟缓地区进行聚类。本研究将对使用层次聚类和 K 均值法形成的聚类进行比较。K 均值法和层次聚类法的比较结果表明,K 均值法的聚类效果更好,其剪影系数为 0.48,Calinski-Harabasz 指数为 10.49,形成的聚类数为 2 个聚类。在分层聚类算法中,剪影系数值为 0.47,卡林斯基-哈拉巴什指数为 9.54。剪影系数和 Calinski-Harabasz 指数的值越大,所形成的聚类就越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sistem Monitoring Suhu Dan Kelembaban Pada Mesin Pembiakan Telur Jangkrik Berbasis IoT Systematic Literature Review: Perbandingan Algoritma Klasifikasi Pengembangan Media Interaktif Berbasis Augmented Reality untuk Melatih Kemampuan Critical Thinking Perencanaan Arsitektur Enterprise Menggunakan Framework TOGAF (The Open Group Architecture Framework) Implementasi Internet Of Things Pada Protokol MQTT Dan HTTP Dalam Sistem Pendeteksi Banjir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1