Implementasi Convolutional Neural Network Pada Alat Klasifikasi Kematangan dan Ukuran Buah Nanas Berbasis Android

Irma Salamah, Sherina Humairoh, S. Soim
{"title":"Implementasi Convolutional Neural Network Pada Alat Klasifikasi Kematangan dan Ukuran Buah Nanas Berbasis Android","authors":"Irma Salamah, Sherina Humairoh, S. Soim","doi":"10.35314/isi.v8i2.3413","DOIUrl":null,"url":null,"abstract":"Abstrack - South Sumatra is the region with the highest production of pineapples in 2021. The process of selling pineapples depends on the size and maturity. Farmers classify pineapples subjectively with both eyes, causing the classification process to be ineffective. Machine learning technology is developing very rapidly, one of which is deep learning which uses very deep neural networks to learn feature representations of data automatically. This study aims to implement the Convolutional Neural Network (CNN) algorithm to classify the ripeness and size of pineapples so that the sorting process for pineapple production can be effective and accurate. There are 6 classification labels, namely, large ripe pineapple, large half ripe, medium ripe, medium half ripe, small ripe, and small half ripe. Raspberry Pi 3B+ and Pi camera are used as fruit image capture tools. The results of the training process accuracy were 99.4%, and the validation process accuracy was 92.4% with a dataset of 275 data for each label. The dataset is used 80% as training data and 20% as validation data. Meanwhile, for testing the tool, 90 test data were used with an accuracy of 90.83%. And the results of the classification will appear on the Android application including the amount of pineapple stock that has been detected, so that it can make it easier for farmers to sort pineapples.","PeriodicalId":354905,"journal":{"name":"INOVTEK Polbeng - Seri Informatika","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INOVTEK Polbeng - Seri Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35314/isi.v8i2.3413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstrack - South Sumatra is the region with the highest production of pineapples in 2021. The process of selling pineapples depends on the size and maturity. Farmers classify pineapples subjectively with both eyes, causing the classification process to be ineffective. Machine learning technology is developing very rapidly, one of which is deep learning which uses very deep neural networks to learn feature representations of data automatically. This study aims to implement the Convolutional Neural Network (CNN) algorithm to classify the ripeness and size of pineapples so that the sorting process for pineapple production can be effective and accurate. There are 6 classification labels, namely, large ripe pineapple, large half ripe, medium ripe, medium half ripe, small ripe, and small half ripe. Raspberry Pi 3B+ and Pi camera are used as fruit image capture tools. The results of the training process accuracy were 99.4%, and the validation process accuracy was 92.4% with a dataset of 275 data for each label. The dataset is used 80% as training data and 20% as validation data. Meanwhile, for testing the tool, 90 test data were used with an accuracy of 90.83%. And the results of the classification will appear on the Android application including the amount of pineapple stock that has been detected, so that it can make it easier for farmers to sort pineapples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于安卓的菠萝果实成熟度和大小分类工具中卷积神经网络的实现
Abstrack - 南苏门答腊是 2021 年菠萝产量最高的地区。菠萝的销售过程取决于其大小和成熟度。农民用双眼对菠萝进行主观分类,导致分类过程效果不佳。机器学习技术发展非常迅速,深度学习就是其中之一,它使用非常深的神经网络来自动学习数据的特征表示。本研究旨在利用卷积神经网络(CNN)算法对菠萝的成熟度和大小进行分类,从而使菠萝生产的分类过程有效而准确。共有 6 个分类标签,即大熟菠萝、大半熟菠萝、中熟菠萝、中半熟菠萝、小熟菠萝和小半熟菠萝。使用树莓派 3B+ 和 Pi 摄像头作为水果图像捕捉工具。结果显示,训练过程的准确率为 99.4%,验证过程的准确率为 92.4%,每个标签的数据集为 275 个数据。数据集的 80% 用作训练数据,20% 用作验证数据。同时,为了测试该工具,使用了 90 个测试数据,准确率为 90.83%。分类结果将显示在安卓应用程序上,包括已检测到的菠萝存量,从而方便农民对菠萝进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sistem Monitoring Suhu Dan Kelembaban Pada Mesin Pembiakan Telur Jangkrik Berbasis IoT Systematic Literature Review: Perbandingan Algoritma Klasifikasi Pengembangan Media Interaktif Berbasis Augmented Reality untuk Melatih Kemampuan Critical Thinking Perencanaan Arsitektur Enterprise Menggunakan Framework TOGAF (The Open Group Architecture Framework) Implementasi Internet Of Things Pada Protokol MQTT Dan HTTP Dalam Sistem Pendeteksi Banjir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1