Maximal-Semantics-Augmented BertGCN for Text Classification

Xiaoqi Yang, Wuying Liu
{"title":"Maximal-Semantics-Augmented BertGCN for Text Classification","authors":"Xiaoqi Yang, Wuying Liu","doi":"10.1142/s2717554523500169","DOIUrl":null,"url":null,"abstract":". Text classification is an important research work in the fields of natural language processing (NLP), and many methods of machine learning and deep learning are widely used in this work. In this paper, we propose a method which named Maximal-Semantics-Augmented BertGCN based on BertGCN that further improves the results of text categorization tasks. In this work, the extended semantic information of text is utilized more effectively by means of text semantic enhancement and graph nodes enhancement while preserving the original text features. Four datasets commonly used in the fields of text classification named R8, R52, Ohsumed and MR were used to verify the validity of the method we proposed. Experimental results show that compared with BertGCN and other baselines, the proposed method which named MSABertGCN has varying degrees of improvement in the accuracy of R8, R52, Ohsumed and MR datasets.","PeriodicalId":181294,"journal":{"name":"International Journal of Asian Language Processing","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2717554523500169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Text classification is an important research work in the fields of natural language processing (NLP), and many methods of machine learning and deep learning are widely used in this work. In this paper, we propose a method which named Maximal-Semantics-Augmented BertGCN based on BertGCN that further improves the results of text categorization tasks. In this work, the extended semantic information of text is utilized more effectively by means of text semantic enhancement and graph nodes enhancement while preserving the original text features. Four datasets commonly used in the fields of text classification named R8, R52, Ohsumed and MR were used to verify the validity of the method we proposed. Experimental results show that compared with BertGCN and other baselines, the proposed method which named MSABertGCN has varying degrees of improvement in the accuracy of R8, R52, Ohsumed and MR datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于文本分类的最大语义增强 BertGCN
.文本分类是自然语言处理(NLP)领域的一项重要研究工作,许多机器学习和深度学习方法被广泛应用于这项工作中。本文在 BertGCN 的基础上提出了一种名为 Maximal-Semantics-Augmented BertGCN 的方法,进一步提高了文本分类任务的结果。在这项工作中,通过文本语义增强和图节点增强,在保留原始文本特征的同时,更有效地利用了文本的扩展语义信息。为了验证我们所提方法的有效性,我们使用了 R8、R52、Ohsumed 和 MR 四个文本分类领域常用的数据集。实验结果表明,与 BertGCN 和其他基线方法相比,所提出的 MSABertGCN 方法在 R8、R52、Ohsumed 和 MR 数据集上的准确率都有不同程度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Utilizing of Durational and Spectral Cues in the Perception of English /i-i:/ Contrast by Chinese Learners Embarking on a Preliminary Exploration: Cross-Lingual Embedding in English-Manipuri Early Segmental Production in Thai Preschool Children Learning Mandarin The Construction of a Large-Scale Hong Kong Chinese Lexicon with Multilingual Translations for Chinese-as-an-Additional-Language (CAL) Students Maximal-Semantics-Augmented BertGCN for Text Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1