Katarzyna Knop, C. Gómez-Moreira, Alison Galloway, Dimitrinka Ditsova, V. Cowling
{"title":"RAM is upregulated during T cell activation and is required for RNA cap formation and gene expression","authors":"Katarzyna Knop, C. Gómez-Moreira, Alison Galloway, Dimitrinka Ditsova, V. Cowling","doi":"10.1093/discim/kyad021","DOIUrl":null,"url":null,"abstract":"On T cell activation, upregulation of gene expression produces the protein required for the differentiation and proliferation of effector cell populations. RAM, the co-factor of the RNA cap methyltransferase RNMT, is upregulated following activation. Formation of the RNA cap protects RNA during synthesis and guides RNA processing and translation. Using conditional gene deletion, we found that Ram expression stabilises RNMT protein in T cells and is required for its upregulation on activation. When the Ram gene is deleted in naïve T cells, there are major impacts on activation-induced RNA cap formation and gene expression. Activated T cell proliferation is dependent on increased ribosome production; in Ram knock-out T cells activation-induced expression of ribosomal protein genes and snoRNAs is most severely reduced. Consistent with these changes, Ram deletion resulted in reduced protein synthesis, and reduced growth and proliferation of CD4 T cells. Deletion of Ram results in a similar but milder phenotype to Rnmt deletion, supporting the role of RAM as a RNMT co-factor.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"54 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/discim/kyad021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
On T cell activation, upregulation of gene expression produces the protein required for the differentiation and proliferation of effector cell populations. RAM, the co-factor of the RNA cap methyltransferase RNMT, is upregulated following activation. Formation of the RNA cap protects RNA during synthesis and guides RNA processing and translation. Using conditional gene deletion, we found that Ram expression stabilises RNMT protein in T cells and is required for its upregulation on activation. When the Ram gene is deleted in naïve T cells, there are major impacts on activation-induced RNA cap formation and gene expression. Activated T cell proliferation is dependent on increased ribosome production; in Ram knock-out T cells activation-induced expression of ribosomal protein genes and snoRNAs is most severely reduced. Consistent with these changes, Ram deletion resulted in reduced protein synthesis, and reduced growth and proliferation of CD4 T cells. Deletion of Ram results in a similar but milder phenotype to Rnmt deletion, supporting the role of RAM as a RNMT co-factor.
T 细胞激活后,基因表达上调,产生效应细胞群分化和增殖所需的蛋白质。RAM是RNA帽甲基转移酶RNMT的辅助因子,在激活后上调。RNA 帽的形成可在合成过程中保护 RNA,并引导 RNA 的加工和翻译。通过条件性基因缺失,我们发现Ram的表达能稳定T细胞中的RNMT蛋白,并且是其激活时上调所必需的。当删除幼稚T细胞中的Ram基因时,会对活化诱导的RNA帽形成和基因表达产生重大影响。活化 T 细胞的增殖依赖于核糖体产量的增加;在敲除 Ram 基因的 T 细胞中,活化诱导的核糖体蛋白基因和 snoRNA 的表达严重减少。与这些变化一致的是,Ram 基因缺失导致蛋白质合成减少,CD4 T 细胞的生长和增殖减少。Ram缺失导致的表型与Rnmt缺失类似,但较为温和,这支持了RAM作为RNMT辅助因子的作用。